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EdDSA is a signature scheme which is widely used in practice due to its high
performance. Despite the wide adoption of EdDSA, no tight security proof exists for
the signature scheme. The only existing security proof analyzes the signature scheme
as a canonical identification scheme onto which the Fiat-Schamir transformation is
being applied, yielding a non-tight security proof.
In this thesis the security of EdDSA is analyzed, utilizing the random oracel model

and the algebraic group model. Using this two methods yields a tight security proof
using special variants of the discrete logarithm problem. This variant is the result
of the key generation algorithm used in EdDSA. The hardness of this variant of the
discrete logarithm problem is then analyzed in the generic group model.
In addition a proof in the single-user setting, a proof in the multi-user setting is

also performed. This proof uses a variant of the one-more discrete logarithm, also
because of the key generation algorithm.
Finally, it is shown that Ed25519 - a widely used instantiation of EdDSA - provides

125 bit security in the single-user setting and 124 bits of security in the multi-user
setting. Ed448 - also a widely used instantiation of EdDSA - provides 221 bits of
security in the single-user setting and 220 bits of security in the multi-user setting.

3





Contents

1 Introduction 7

2 Related Work 9

3 Preliminaries 10
3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Code-based reduction proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Digital Signature Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Security Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.6 Random Oracle Model (ROM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.7 Algebraic Group Model (AGM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.8 Generic Group Model (GGM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 EdDSA Signatures 16
4.1 Encoding of Group Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Message Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.4 Differences from Schnorr Signatures . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.5 Replacing Hash Function Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 The Security of EdDSA in a Single-User Setting 23

5.1 EUF-NMA
ROM⇒ SUF-CMAEdDSA sp . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 EUF-NMA
ROM⇒ EUF-CMAEdDSA lp . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Ed-IDLOG
ROM⇒ EUF-NMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4 Ed-DLog
AGM⇒ Ed-IDLOG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 The Security of EdDSA in a Multi-User Setting 35

6.1 N -MU-EUF-NMA
ROM⇒ N -MU-SUF-CMAEdDSA sp . . . . . . . . . . . . . . . . . 36

6.2 N -MU-EUF-NMA
ROM⇒ N -MU-EUF-CMAEdDSA lp . . . . . . . . . . . . . . . . . 40

6.3 N -MU-Ed-IDLOG
ROM⇒ N -MU-EUF-NMA . . . . . . . . . . . . . . . . . . . . . . 41

6.4 N -Ed-DLog-Reveal
AGM⇒ N -MU-Ed-IDLOG . . . . . . . . . . . . . . . . . . . . . 43

7 The Ed-GGM 47
7.1 Bounds on Ed-DLog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.2 Bounds on N -Ed-DLog-Reveal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8 Concrete Security of EdDSA 60
8.1 Ed25519 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.2 Ed448 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

9 Conclusion 64



References 65

6





1 Introduction

The EdDSA signature scheme was first introduced in 2011 by Bernstein, Duif, Lange, Schwabe
and Yang, instantiated as Ed25519 using the Edwards25519 twisted Edwards curve [1]. In 2015
Bernstein et al. published a new paper, which introduced a more general version the EdDSA
signature scheme [2]. Due to its high performance and small signature size, the EdDSA signature
scheme is very popular and widely used in applications such as TLS, SSH and the Signal protocol.
From these papers came standards such as RFC 8032 [3] and FIPS 186-5 [4].

The original paper focused on the performance of the signature scheme and did not provide a
formal security analysis of the signature scheme. The EdDSA signature scheme is closely related
to the Schnorr signature scheme. Although EdDSA is related to the Schnorr signature scheme,
the security proofs for Schnorr signature schemes do not apply to EdDSA. The EdDSA signature
scheme uses the key prefixing modification and calculates its commitments deterministically,
which does not weaken the security [5]. Besides these modifications, EdDSA also uses a different
group structure, which is a prime order subgroup of a twisted Edwards curve, and clamps some
bits of the private key to predefined values. Both of these modifications have not been well
studied for the Schnorr signature scheme. The EdDSA signature scheme also specifies several
variations of parsing the signature from a bitstring. One way of parsing the signature is to
allow only one bitstring representation for a scalar and curve point, and another way is to allow
multiple bitstring representations of the same scalar and curve point. This raises the question
of whether the changes still result in a secure signature scheme.

The desired security notions for signature schemes is EUF-CMA or SUF-CMA security. These
security notions require that no adversary is able to provide a forged signature from an arbitrary
set of valid signatures for arbitrary messages. While EUF-CMA requires a forged signature for
a message for which the adversary did not obtain a valid signature, SUF-CMA also counts as
valid forgeries message/signature pairs that were not provided to the adversary, meaning that
the adversary also wins if he is able to generate a new valid signature for a message given an
already valid signature for that message.

The Schnorr signature scheme originates from a canonical identification scheme to which the
Fiat-Schamir transformation is applied [6]. This transformation transforms the interactive iden-
tification scheme into a non-interactive one by making some of the values deterministic. By
making the values also dependent on a message, the resulting transcript of the canonical iden-
tification scheme can be interpreted as the signature for that message [7].

In a 2020 paper, Brendel et al. showed that Ed25519 satisfies EUF-CMA and SUF-CMA
security, depending on which EdDSA standard is used [8]. They did this by extracting the
underlying canonical identification scheme, proving its security, and then proving the security
of the constructed signature scheme via the Fiat-Schamir transformation. Due to the use of the
reset lemma, the provided security proof is not tight.

Tightness is a property of a security proof. A security proof is said to be tight if the probability of
success of an adversary B attacking problem B, constructed from adversary A attacking problem
A, is at most smaller than the probability of success of A by a small constant factor.

Tight security proofs are desirable because they tightly bind the hardness of the underlying
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assumption to the security of a cryptographic scheme. Without a tight security proof, it is
not ruled out that an adversary may be discovered who needs considerably less effort to break
the security of a cryptographic scheme compared to adversaries against its underlying assump-
tion [9]. For that reason, much larger parameters must be used to securely instantiate the
cryptographic scheme compared to the parameters needed to achieve the same level of security
in the underlying assumption. This is undesired in practice, as usually a scheme becomes less
efficient the larger its parameters are chosen.

For the Schnorr signature scheme, a tight security reduction can be achieved by using the alge-
braic group model and the random oracle model to directly show the EUF-CMA security using
the discrete logarithm assumption, as shown by Fuchsbauer et al. [10], instead of analyzing it as
a canonical identification scheme onto which the Fiat-Schamir transformation is applied.

This thesis uses a similar approach to the one in the paper by Fuchsbauer et al. [10] to achieve
a tight security proof for EdDSA. The tight security proof is achieved by utilizing the algebraic
group model and the random oracle model. However, some details of the EdDSA signature
scheme have to be taken into account, which mainly is the different group structure and the key
clamping, introduced by the key generation algorithm. Also, the way the signature is parsed
has a major impact on the security guarantees of the EdDSA signature scheme. There are two
variations how to parse the signature. One is called strict parsing and the other one is called
lax parsing. Strict parsing allows only one bitstring representation of a scalar value, while lax
parsing allows multiple bitstring representations of the same scalar value. Strict parsing ensures
SUF-CMA security, while lax parsing only ensures EUF-CMA security.

Another important property of a signature scheme, also briefly mentioned in [8], is its multi-
security. When looking at practical applications of a signature scheme, not only one user is using
the signature scheme, but many users are involved, all of whom have their own key pair. In most
cases, an adversary is satisfied with compromising one of the users. This leaves the question
whether an adversary gains an advantage in compromising a single user if he is provided with
many public keys and can request signatures for any of the provided public keys. The multi-user
security of Schnorr-like signature schemes has been analyzed in several papers [11,12], but none
of them apply to EdDSA or give a tight reduction.

This thesis uses the same method of providing a tight security proof in the algebraic group model
and the random oracle model to prove the security of EdDSA in the multi-user setting using
a variant of the one more discrete logarithm assumption, which also takes the key clamping of
EdDSA into account.

Finally, a concrete security level for common instantiations of the EdDSA signature scheme is
provided by analyzing the hardness of these variants of the discrete logarithm problem and the
one-more discrete logarithm problem in the generic group model.

The main contributions of this thesis are the following:

1. Providing the first tight security proof for EdDSA in the single-user setting.

2. Providing the first tight security proof for EdDSA in the multi-user setting.

3. Showing the actual bit security of several widely used instantiations of the EdDSA signa-
ture scheme.
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2 Related Work

Standards for EdDSA The EdDSA signature scheme was introduced in 2011 by Bernstein et
al. as the specific instance Ed25519, which is the EdDSA signature scheme instantiated with
the twisted Edwards curve Edwards25519 [1]. Later in 2015, with a paper by Bernstein et
al., a more general version of EdDSA was introduced, which mainly lifted some restrictions on
the underlying finite field of the elliptic curve [2]. It also introduced a prehashing variant of
EdDSA called HashEdDSA, while the original version is called PureEdDSA. In HashEdDSA, the
message is hashed before the signature algorithm is invoked. This has advantages on memory-
constrained devices because it does not have to store the entire message. In 2017, the IETF
published a standard for EdDSA in its RFC 8032 [3]. This standard removes some ambiguity
regarding the decoding of integers and points of the elliptic curve during signature verification.
It also introduces a new variant of the signature scheme that includes an additional parameter
named context. In addition to standardizing a general version of EdDSA, the RFC included
parameters for specific instantiations Ed25519 and Ed448. In 2023, this standard was adopted
by the NIST in its ”Digital Signature Standard (DSS)” FIPS 186-5 [4].

Schnorr Signatures and Fiat-Schamir Transformation The EdDSA and Schnorr signature
schemes have a similar structure. The Schnorr signature scheme has been introduced by Claus
Peter Schnorr in 1991 [6]. It has proven to be a robust and efficient signature scheme and has
undergone several security analyses [10–16]. The foundation of the Schnorr signature scheme is
the canonical identification scheme [17] to which the Fiat-Schamir transformation [7] is applied.
There are many proofs showing that the Fiat-Schamir transformation yields a secure signature
scheme, using canonical identification schemes with different properties (e.g. [17–19]).

Related Proofs As mentioned above, there exists a paper proving the security of the Ed25519
signature scheme [8]. In this paper, the authors extracted the underlying canonical identification
scheme from EdDSA and used the reset lemma from [20] to prove the impersonation security
of the canonical identification scheme under the discrete logarithm assumption. This reduction
turned out to be non-tight. They then reduced the EUF-CMA security of the Ed25519 signature
scheme to the impersonation security of the underlying canonical identification scheme. To do
this, they had to guess the position of the hash query in which they had to embed a challenge,
further losing tightness.

A paper by Chalkias, Garillot and Nikolaenko analyzes the security of Ed25519 with respect to
different signature decoding methods and the implementation of additional checks during the
signature verification [21]. This paper also analyzes lesser known security properties such as
strongly binding signatures, but already assumes SUF-CMA security of Ed25519. They also
analyzed the impact of cofactorless vs. cofactored verification with respect to batch verification
of Ed25519 signatures.

The multi-user security of EdDSA was briefly analyzed in a paper by Bernstein [11] after he
exposed a flaw in a tight multi-user security proof for the Schnorr signature scheme by Galbraith,
Malone-Lee, and Smart [22]. In this paper, Bernstein provided a tight security proof for the
multi-user security of key-prefixed Schnorr signatures. The EdDSA signature scheme is also a
key-prefixed version of a Schnorr signature. However, due to the clamping introduced in the
key generation algorithm of EdDSA, these results do not apply directly to EdDSA. Attempting
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to use the same method as in Bersteins paper would again result in a non-tight security proof,
as already mentioned in the same paper.

In 2016, Kiltz et al. provided a tight bound on the multi-user security of Schorr signatures
without the need for key-prefixing [12]. The tightness was a result of the random self-reducibility
property of the underlying canonical identification scheme. Again, this property cannot be
achieved by EdDSA due to the clamping introduced by the key generation algorithm.

Fuchsbauer et al. generated a tight security proof for the Schnorr signature scheme by using the
algebraic group model [10]. They achieved this by using the representation of the commitment
together with a forged signature to compute the discrete logarithm of the public key. This
approach also looks promising for the EdDSA signature scheme and will be analysed in this
thesis.

3 Preliminaries

3.1 Notation

3.1.1 General Notation

For an integer n, Zn is defined as the residual ring Z/nZ. a← A denotes sampling the element
a from a non-empty finite set A uniformly at random. := denotes a deterministic assignment
of a variable. {0, 1}n is the set of all bitstrings of length n, while {0, 1}∗ denotes the set of
finite bitstring of arbitrary length. (x, y) is a tuple of the two elements x and y. {x, y} is a set
of the elements x and y. At the beginning of a game a set is initialized to be the empty set
{}.

∑
denotes a table and

∑
[x] denotes the value of the table at position x. Each position

of the table is uninitialized at the beginning of a game. An uninitialized position in the table
is denoted with the bottom symbol ⊥. A function f : N → R is called negligible if for all
polynomials p there exists a N ∈ N so that ∀n ≥ N : f(n) < 1

p(n) is true. S ∈ f(x) denotes the

set S of outputs of f given x as input. All algorithms are probabilistic polynomial time (ppt)
unless stated otherwise. o← A(I) denotes running the algorithm A with input I with uniform
random coins and o describing its output. If A has additionally access to an oracle O this is
denoted as o ← AO(·)(I). A security game consists of a main procedure and optionally some
oracle procedures. When a game is played, the main procedure is run and adversary A is given
some inputs and access to the oracle procedures. Based on the output of the adversary A and
its oracle calls, the main procedure outputs 1 or 0 depending on whether the adversary A won
the game. The message space of the signature scheme is defined asM.

3.1.2 Algebraic Notation

A group description is denoted as a tuple G = (L,G, B) with G being a cyclic group of prime
order L generated by group element B. The group uses additive notation for its group law and
group elements are denoted by uppercase letters A. Encoded group elements are denoted by
underlining A. Further information on the encoding of group elements can be found in section
4. It is assumed that there exists a group generation algorithm that, upon inputting 1λ, outputs
a group description G with L being λ bits in length.
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3.2 Code-based reduction proofs

To perform the security proof of the EdDSA signature scheme, code-based game playing proofs
are used. as introduced in [23]. In these proofs, an adversary is tasked to play (and win)
against a predefined game. The game is defined by a set of instructions which are executed
consecutively. At one point the game calls the adversary with some input and gets some output
back from it. The game then decides, depending on the output of the adversary, whether it has
won or not. In addition the adversary might get access to one or more procedures, of which the
adversary is only able to observe the output of the procedure call given a specific input. Those
procedures are called oracles. The adversary’s advantage in a game is the adversary’s ability to
win the game more reliably than through the use of trivial attacks, such as guessing the answer
to the game.

During the proof, these games are being modified until an adversary B against another problem
can be constructed, that simulates the view of an adversary against the modified game. For each
modification, it must be argued that there is only a negligible probability that this modification
can be detected by an adversary. The adversary B is called a reduction. By constructing an
adversary B against another problem it can be shown that any adversary attacking the modified
game, simulated by adversary B, can also be used to break another game, attacked by adversary
B. In other words, it says that if problem A can be reduced onto problem B, any algorithm
solving problem A can be transformed into an algorithm solving problem B. This can be used to
show the security of cryptographic schemes by transforming all adversariesA against the security
of the cryptographic scheme into an adversary B attacking a hard mathematic assumption, to
which it is believed that no efficient adversary exists.

3.2.1 Identical-Until-Bad Games

While modifying the games it has to be ensured that the advantage for an attacker to distinguish
between the original and modified game is negligible. This can be achieved by constructing so
called identical-until-bad games.

Definition 3.1 (Identical-until-bad games [23]). Two games are called identical-until-bad games
if they are syntactically equivalent except for instructions following the setting of a bad flag to
true.

Lemma 3.1 (Fundamental lemma of game-playing [23]). Let G and H be identical-until-bad
games and let A be an adversary. Then,

|Pr[GA ⇒ 1]− Pr[HA ⇒ 1]| ≤ Pr[bad]

This means that the advantage to distinguish between two identical-until-bad games is bound
by the probability of the bad flag being set.

3.3 Digital Signature Scheme

A digital signature scheme is a method to ensure the authenticity of data. The signer, which
is in the possession of a private key, generates a signature for a specific message. The verifier
is then able to verify the authenticity of this data using the public key and the generated
signature.
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Definition 3.2. A digital signature scheme SIG = (KeyGen,Sign,Verify) is a tuple of algorithms.

KeyGen: The key generation algorithm, which upon receiving the security parameter as
input outputs a matching tuple of public and private key.

Sign: The signature algorithm, which upon receiving a secret key and a message, outputs
a signature for that message.

Verify: The verification algorithm, which upon receiving a public key, a message and a
signature, outputs 1 if the signature gets accepted and 0 otherwise.

For the digital signature scheme to be correct, it is required that ∀(pk, sk) ∈ KeyGen(par),m ∈
M, σ ∈ Sign(sk,m) : Verify(pk,m, σ) = 1

A common security notion for digital signature schemes is the existential unforgeability under
chosen message attack (EUF-CMA) security. It requires that no adversary is able to forge a
signature for a message to which they have not observed a valid signature, given a public key.
A stronger notion, that is often used, is strong unforgeability under chosen message attack
(SUF-CMA), which only requires the adversary to provide a message signature pair that has
not been provided to the adversary. With this security notion, the adversary also wins if it
is able to forge a new valid signature from an already valid one. Both of these notions are
in the single-user setting. In the multi-user setting of these security notions, the adversary
is supplied with N public keys and has to forge a signature for one of those public keys. In
the following, the multi-user definitions of the EUF-CMA and SUF-CMA security notions are
defined, respectively N -MU-EUF-CMA and N -MU-SUF-CMA. The single-user variant of these
security notions can be seen as a special case of the multi-user definitions in which the adversary
is only provided with one public key.

Definition 3.3 (N -MU-EUF-CMA). Let SIG = (KeyGen, Sign,Verify) be a digital signature
scheme and N be an integer. Let the N -MU-EUF-CMA game be defined in figure 1. SIG is
N -MU-EUF-CMA secure if for all ppt adversaries A, we have

AdvN -MU-EUF-CMA
SIG,A (λ) := Pr[N -MU-EUF-CMAA ⇒ 1] ≤ negl(λ).

Game N -MU-EUF-CMA
for i ∈ {1, 2, ..., N}

(pki, ski)← KeyGen(1λ)
(m∗, σ∗)← ASign(·,·)(pk1, pk2, ..., pkn)

return ∃i ∈ {1, 2, ..., N} : Verify(pki,m∗, σ∗)
?
= 1 ∧ (pki,m

∗) /∈M

Oracle Sign (i ∈ {1, 2, ..., N}, m ∈M)
σ ← Sign(ski,m)
M := M ∪ {(pki,m)}
return σ

Figure 1: N -MU-EUF-CMA Security Game

Definition 3.4 (N -MU-SUF-CMA). Let SIG = (KeyGen,Sign,Verify) be a digital signature
scheme and N be an integer. Let the N -MU-SUF-CMA game be defined in figure 2. SIG is
N -MU-SUF-CMA secure if for all ppt adversaries A, we have

13



AdvN -MU-SUF-CMA
SIG,A (λ) := Pr[N -MU-SUF-CMAA ⇒ 1] ≤ negl(λ).

Game N -MU-SUF-CMA
for i ∈ {1, 2, ..., N}

(pki, ski)← KeyGen(1λ)
(m∗, σ∗)← ASign(·,·)(pk1, pk2, ..., pkn)

return ∃i ∈ {1, 2, ..., N} : Verify(pki,m∗, σ∗)
?
= 1 ∧ (pki,m

∗, σ∗) /∈M

Oracle Sign (i ∈ {1, 2, ..., N}, m ∈M)
σ ← Sign(ski,m)
M := M ∪ {(pki,m, σ)}
return σ

Figure 2: N -MU-SUF-CMA Security Game

The N -MU-EUF-NMA security game is similar to the N -MU-EUF-CMA game. The only
difference is that the adversary does not has access to an oracle to obtain valid signatures for
arbitrary messages. Again the EUF-NMA security notation is a special case of the N -MU-EUF-
NMA security notation with N = 1.

Definition 3.5 (N -MU-EUF-NMA). Let SIG = (KeyGen,Sign,Verify) be a digital signature
scheme and N be an integer. Let the N -MU-EUF-NMA game be defined in figure 3. SIG is
N -MU-EUF-NMA secure if for all ppt adversaries A, we have

AdvN -MU-EUF-NMA
SIG,A (λ) := Pr[N -MU-EUF-NMAA ⇒ 1] ≤ negl(λ).

Game N -MU-EUF-NMA
for i ∈ {1, 2, ..., N}

(pki, ski)← KeyGen(1λ)
(m∗, σ∗)← A(pk1, pk2, pkn)
return ∃i ∈ {1, 2, ..., N} : Verify(pki,m∗, σ∗)

?
= 1

Figure 3: N -MU-EUF-NMA Security Game

3.4 Security Assumptions

This thesis proves the security of the EdDSA signature scheme using two assumptions. The
single-user security of EdDSA can be proven using the discrete logarithm assumption, while the
multi-user security of EdDSA requires the stronger one-more discrete logarithm assumption.
Both security assumptions are presented in this section.

3.4.1 Discrete Logarithm Problem

Definition 3.6 (Discrete Logarithm Problem). Let G be a cyclic group of order L with a
generator B. The advantage of an adversary A is defined as following:

14



AdvDLog
G,A := Pr[a

?
= a′|a← ZL; a

′ ← A(aB)].

3.4.2 One-More Discrete Logarithm

The one-more discrete logarithm assumption is stronger than the discrete logarithm assumption.
In this assumption the adversary is supplied with N group elements and an oracle to obtain
the discrete logarithm of up to N − 1 group elements. The task of the adversary is to output
the discrete logarithm for all supplied group elements.

Definition 3.7 (One-More Discrete Logarithm Problem [24]). Let G be a cyclic group of order
L with a generator B. Let the one-more discrete logarithm game be defined in figure 4. The
advantage of an adversary A is defined as following:

AdvOM-DLog
G,A := Pr[OM-DLogA ⇒ 1].

Game OM-DLog
L := {}
N := 0
(a′1, ..., a

′
N )← ADL(·),CH()()

return ∀i ∈ {1, 2, ..., N} : ai
?
= a′i

Oracle CH()
N := N + 1
ai ← ZL

Ai := aiB
L := L ∪ {ai}
return Ai

Figure 4: One-More Discrete Logarithm

The DL oracle outputs the discrete logarithm of the input element in respect to the generator
B and is allowed to be called N − 1 times.

3.5 Elliptic Curves

The EdDSA signature scheme has been defined using twisted Edwards curves as the underlying
group structure. Twisted Edwards curves are a special form of elliptic curves. For the proofs
performed in this thesis, no specific properties of twisted Edwards curves are used. Therefore,
they will not be introduced in great detail. For more details on twisted Edwards curves, see
the paper by Bernstein et al. [25]. The use of twisted Edwards curves in EdDSA is mainly for
performance reasons [1].

The proofs only assume that the underlying group is albian, which is true for every elliptic
curve. Later, the hardness of a special variant of the discrete logarithm assumption is analyzed
in the generic group model, to calculate the concrete security level of EdDSA. For proofs in the
generic group model to apply the underlying group must be generic, which is widely assumed
to be true for elliptic curves. A group is generic if just the well-defined group operations can be
performed on the group elements. For elliptic curves the additive group notation is used.

Elliptic curves also have a property called the cofactor. The cofactor of an elliptic curve refers
to the number of points on the elliptic curve divided by the number of points in a particular
subgroup. The EdDSA signature scheme is not defined to use the entire twisted Edwards curve
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but instead uses the largest prime order subgroup of that twisted Edwards curve. Therefore,
if the number of points on the twisted Edwards curve is N and the order of the prime order
subgroup is L, the cofactor with respect to this subgroup is N

L .

3.6 Random Oracle Model (ROM)

Some of the following proofs are conducted in the random oracle model. The random oracle
model was introduced by Bellare and Rogaway in 1993 [26]. In the random oracle model some
primitives (in this case hash functions) are modeled as public random oracles. This means that
instead of calling the hash function, the adversary has to call the random oracle provided by
the challenger. This random oracle must behave like a true random function.

To simulate a truly random function in polynomial time, a process called ”lazy-sampling” can
be used. Lazy-sampling means that the challenger has a table that starts out empty. When
the adversary queries a value from the random oracle, the challenger checks if that input is in
the table. If the input is in the table, the challenger returns the output value according to the
table. Otherwise, the challenger chooses an output value from a uniform random distribution
and inserts it into the table for that particular input value. The challenger then returns that
value.

The random oracle paradigm allows the challenger to observe and influence the behavior of
the adversary. Since the random oracle behaves like a truly random function, the adversary
must query the random oracle to know the output value for a given input value. Therefore,
the challenger can observe any input value the adversary would have used to the hash function.
Also, the challenger has the ability to program specific output values of the random oracle, as
long as it is correctly distributed and consistent. Consistent means that at no time should the
random oracle output two different values for the same input value.

3.7 Algebraic Group Model (AGM)

The algebraic group model was introduced in 2018 by Fuchsbauer et al. [27]. In the algebraic
group model, all adversaries are modeled as being algebraic. This means that the adversary
has to know a representation for each group element regarding all group elements the adversary
received from the challenger. This representation has to be provided to the challenger for
every group element the adversary outputs or inputs as an parameter to an oracle query. For
example, if the adversary receives the group elements A and B from the challenger and at one
point outputs group element C the adversary also has to output a vector

⇀
c = (c1, c2) which

satisfies: C = c1A+ c2B. For the game proofs, the group element C, and its representation
⇀
c

is denoted as [C]⇀
c
.

3.8 Generic Group Model (GGM)

Unlike the random oracle model or the algebraic group model the generic group model is not used
to construct reductions from one problem to another. Rather, it is used to obtain information-
theoretic lower bounds on the complexity of generic adversaries against a given problem. Generic
algorithms are algorithms that perform only the defined group operations on group elements
and do not exploit group-specific representations of the element.
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The generic group model was first introduced by Shoup in 1997 [28]. In the generic group model
the adversary does not work directly with the group elements directly. Instead the challenger
provides the adversary with random bitstrings, called labels, instead of group elements. Each
unique label represents an unique group element. The adversary can then use oracles to perform
the defined group operations on the group elements, represented by labels. The challenger then
responds with the label of the resulting group element. In this way, every structure of the
group is hidden from the adversary, as it works only with random labels. The only operation
the adversary can perform on its own is to compare group elements for equality by comparing
labels.

In 2005, Maurer proposed an alternative definition of the generic group model [29]. The proofs
conducted in this thesis will use the generic group model as defined by Shoup.

4 EdDSA Signatures

This section takes a closer look at the differences between the existing EdDSA specifications
and the original Schnorr signature scheme. This section is partly inspired by [8].

As mentioned above, there are two papers by Bernstein et al., that define the EdDSA signature
scheme [1,2]. The 2015 paper [2] describes a more generic version of the EdDSA signature scheme
than the original publication [1]. According to [2], the EdDSA signature scheme is defined by 11
parameters, as shown in table 1. The paper also describes two variants of EdDSA. One is called
PureEdDSA and the other is called HashEdDSA. HashEdDSA is a prehashing variant of the
PureEdDSA signature scheme. This means that, in HashEdDSA, the message is being hashed
by a hash function before it is signed or verified. Both variants can be described by the definition
of the EdDSA signature scheme, by using a different preqhash function. In PureEdDSA the
prehash function is simply the identity function. Another important variation in the EdDSA
standard is the decoding of the signature. [2] describes two variations on how signatures can be
decoded during verification. Both variations are described further in this section, as they have
a major impact on the security of the EdDSA signature scheme.

There also exist two major standards for the EdDSA signature scheme. The first one is the
RFC 8032, which was introduced by the IETF in 2017 [3]. In addition to publishing concrete
parameterizations for the Ed25519 and Ed448 signature schemes, it also includes a variant of
the EdDSA signature scheme that includes a context. The context is a separate string that
can be used to separate the use of EdDSA between different protocols. As argued below, the
inclusion of this context does not affect the security of the signature scheme and can be modeled
as being part of the message.

The 2023 FIPS 186-5 standard [4] also includes the EdDSA signature scheme as specified in
RFC 8032.

A version of the EdDSA signature scheme, representing all mentioned standards, is depicted in
figure 5.
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Parameter Description

q An odd prime power q. EdDSA uses an elliptic curve over the finite field Fq.
b An integer b with 2b−1 > q. The bit size of encoded points on the twisted Edwards

curve.
Enc(·) A (b− 1)-bit encoding of elements in the underlying finite field.
H(·) A cryptographic hash function producing 2b-bit output.
c The cofactor of the twisted Edwards curve.
n The number of bits used for the secret scalar of the public key.
a, d The curve parameter of the twisted Edwards curve.
B A generator point of the prime order subgroup of E.
L The order of the prime order subgroup.
H ′(·) A prehash function applied to the message prior to applying the Sign or Verify

procedure.

Table 1: Parameter of the EdDSA signature scheme

KeyGen

k ← {0, 1}b
(h0, h1, ..., h2b−1) := H(k)

s← 2n +
∑n−1

i=c 2ihi

A := sB
return (A, k)

Sign(k, m)

(h0, h1, ..., h2b−1) := H(k)

s← 2n +
∑n−1

i=c 2ihi

(r′0, r
′
1, ..., r

′
2b−1) :=

H(hb|...|h2b−1|m)

r :=
∑2b−1

i=0 2ir′i
R := rB
S := (r + sH(R|A|m)) (mod L)
return σ := (R,S)

Verify(A, σ := (R,S),m)

return 2cSB
?
= 2cR+

2cH(R|A|m)A

Figure 5: Generic description of the algorithms KeyGen, Sign and Verify used by the EdDSA
signature scheme

4.1 Encoding of Group Elements

The encoding function encodes points on the twisted Edwards curve into a b-bit bitstring and
vice versa. It is assumed that when a b-bit bitstring is decoded, the resulting point is either
a valid point on the twisted Edwards curve or otherwise the decoding will fail. In this way,
decoding a b-bit bitstring into a cuve point implicitly ensures that the decoded point is a valid
point on the specified twisted Edwards curve. The encoding function does not ensure that
each point has exactly one bitstring representation. This means that there may be multiple
bitstrings mapping to the same curve point during decoding. The effect of this is included in
the analysis.

4.2 Message Space

The message spaceM is defined as a bitstring of arbitrary length. To make the proof applicable
to the EdDSA variant with context, the context can be modeled as part of the message.

Looking at the RFC and FIPS standards, the context is passed to a ”dom” function which
concatenates the context with some additional data. The resulting data is then passed as
additional data to each hash function call during signature generation and verification. Since the
proofs are performed in the random oracle model, the position of the data in the hash function
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call, the actual content of the message, and the context are not relevant to the distribution of
the random oracle. The context can be modeled as being part of the message, since the random
oracle has the same uniform random distribution with or without the context.

4.3 Signature

The signature is defined as a 2b bitstring of the encoded curve points R concatenated with the
b-bit little endian encoding of the scalar S.

The fact that S is defined as b-bit little-endian encoding poses a problem. It is possible that the
decoded S is larger than the order L of the generator. The original paper [2] proposes two ways
to handle decoded S values that are larger than L. The first approach is to replace S with S
(mod L) and continue verifying the signature. This is called lax parsing. The other approach
is to reject all S values greater than L and fail the signature verification in that case. Parsing
the integer in this way is called strict parsing.

The later proofs show that these two approaches lead to different security properties of the
signature. Using strict parsing results in SUF-CMA security, while using lax parsing ”only”
ensures EUF-CMA security.

Both the RFC and FIPS standards require strict parsing.

4.4 Differences from Schnorr Signatures

As pointed out in [8], there are some minor differences from the traditional Schnorr signature
that prevent existing proofs of the Schnorr signature scheme from being applied to EdDSA.
This section points out the differences between the EdDSA signature scheme and the traditional
Schnorr signature scheme.

4.4.1 Group Structure

Unlike the standard Schnorr signature scheme, which is defined over a prime order group,
the EdDSA signature scheme is defined over a prime order subgroup of a twisted Edwards
curve.

This may pose additional challenges, since working with group elements outside the prime order
subgroup may have some unintended side effects. In the proofs using the algebraic group model,
where this might become relevant, it is argued that the additional group structure of the twisted
Edwards curves does not pose an additional threat to the scheme.

4.4.2 Private Key Clamping

Instead of choosing the secret scalar uniformly at random, as done in most other schemes, the
secret scalar is generated by hashing a random bitstring, fixing some bits of the hash result to
a specific value and then interpreting n bits of the result as the little endian representation of
an integer.

To be more precise, from the lower b bits of the 2b bitstring the lowest c bit are set to 0, where
c is the cofactor of the twisted Edwards curve, and the nth bit is set to 1. Then the first n bits
are interpreted as the secret scalar s.
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This is strictly less secure, in the sense of the discrete logarithm problem, than choosing the
secret scalar uniformly at random. It also makes proofs in the multi-user setting more challeng-
ing, since rerandomization of a public key is not easily possible and therefore the multi-user
security of EdDSA cannot be easily reduced onto the single-user security of EdDSA.

To overcome this challenge, specific variants of the discrete logarithm problem and the one-more
discrete logarithm problem are introduced that take into account the specific key generation.
The hardness of these problems is then studied in the generic group model.

Such a choice of the secret scalar should help to make the implementation constant time and
to prevent the leakage of bits through side-channel attacks.

4.4.3 Key Prefixing

The EdDSA signature scheme also includes the public key as an additional input to the hash
function when generating the challenge. This change does not reduce the security of the signa-
ture scheme and is mainly related to the multi-user security of the signature scheme. Whether
key prefixing actually improves multi-user security is much debated [11,12].

4.4.4 Deterministic Nonce Generation

The commitment is chosen as the result of a hash function instead of being chosen at random
each time a signature is generated. This makes signature generation deterministic. Since the
hash function can be modeled as a random oracle, the deterministic generation of the commit-
ment does not pose any additional security risk, since it can be replaced by a random function,
as shown in 4.5.

4.5 Replacing Hash Function Calls

To make it easier to work with the random oracle, the following proofs introduce a variant of
the EdDSA signature scheme in which some calls to the hash function are replaced by direct
sampling of a value at random or by using a random function. It is then shown that the
advantage of winning the SUF-CMA game is roughly the same in both versions of the signature
scheme.

Introducing EdDSA’ The EdDSA’ signature scheme is shown in figure 6. The difference from
the original EdDSA signature scheme is that the value h is sampled uniformly at random from
{0, 1}2b, and r′ is the result of a call to random function instead of the hash function.

Theorem 4.1. Let A be an adversary against SUF-CMA security of the EdDSA signature
scheme. Then

AdvSUF-CMA
EdDSA’,A(λ) ≤ AdvSUF-CMA

EdDSA,A (λ) +
2(qh + 1)

2b
.

Proof Overview The different games used in the proof are depicted in figure 7. The proof uses
the random oracle model. The main idea is that the values h and ri look uniformly random to
the adversary if he never queries the hash function with k or a value starting with hb|...|h2b−1.
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KeyGen

(h0, h1, ..., h2b−1)← {0, 1}2b
s← 2n +

∑n−1
i=c 2ihi

A := sB
return (A, k := (s, hb|...|h2b−1))

Sign(k := (s, hb|...|h2b−1), m)

(r′0, r
′
1, ..., r

′
2b−1) :=

RF (hb|...|h2b−1|m)

r :=
∑2b−1

i=0 2ir′i
R := rB
S := (r + sH(R|A|m)) (mod L)
return σ := (R,S)

Verify(A, σ := (R,S),m)

return 2cSB
?
= 2cR+

2cH(R|A|m)A

Figure 6: Generic description of the algorithms KeyGen, Sign and Verify used by the EdDSA’
signature scheme

Since those values are unknown to the adversary, it is only able to guess those values, which is
unlikely due to the high entropy of them. For this reason, these calls to the hash function can
be replaced by sampling truly random values.

Formal Proof

Proof.

The proof will be conducted by gradually changing the game G0, which is the SUF-CMA game
for EdDSA, to G4, which is the SUF-CMA game for EdDSA’. At each step it is argued that
the change can be detected with at most negligible probability.

G0 : Let G0 be defined in figure 7 by excluding all boxes except the black one. Clearly G0 is
the SUF-CMA game for EdDSA. By definition,

AdvSUF-CMA
EdDSA,A (λ) = Pr[SUF-CMAAEdDSA ⇒ 1] = Pr[GA0 ⇒ 1].

G1 : Let G1 be defined by additionally including all blue boxes and excluding the black boxes.
This change inlines the hash function calls and introduces two if conditions in the random oracle
that set a bad flag if the abort condition is true. The inlining of the hash function calls ensures
that the challenger does not trigger the abort conditions itself. Since the behavior of the game
does not change, the changes are conceptual and the probability of winning the game is not
affected. Hence,

Pr[GA0 ⇒ 1] = Pr[GA1 ⇒ 1].

G2 : G2 now introduces the abort instruction in the red box. The game is aborted if the flag
bad1 is set. This abort instruction ensures that the adversary will not be able to get the hash
value for the secret key k. For each individual query, the bad1 flag is set with a probability at
most 1

2b
. The flag is set if the input to the hash function is equal to k. k is a value chosen
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Game G0 / G1 / G2 / G3 / G4

k ← {0, 1}b
(h0, h1, ..., h2b−1) := H(k) // G0

if
∑

[k] = ⊥ then // G1 −G3∑
[k]← {0, 1}2b

(h0, h1, ..., h2b−1) :=
∑

[k]

(h0, h1, ..., h2b−1)← {0, 1}2b // G4

s← 2n +
∑n−1

i=c 2ihi

A := sB
(m∗, σ∗)← AH(·),Sign(·)(A)
return Verify(A,m∗, σ∗) ∧ (m∗, σ∗) /∈ Q

Oracle Sign (m ∈M)

(r′0, r
′
1, ..., r

′
2b−1) := H(hb|...|h2b−1|m) //

G1

if
∑

[hb|...|h2b−1|m] = ⊥ then // G1 −
G3∑

[hb|...|h2b−1|m]← {0, 1}2b
(r′0, r

′
1, ..., r

′
2b−1) :=

∑
[hb|...|h2b−1|m]

(r′0, r
′
1, ..., r

′
2b−1) = RF (hb|...|h2b−1|m) //

G4

r :=
∑2b−1

i=0 2ir′i
R := rB
S := (r + sH(R|A|m)) (mod L)
σ := (R, S)
Q := Q ∪ {(m,σ)}
return σ

Oracle H(m ∈ {0, 1}∗)
if m = k then // G1 −G4

bad1 := true
abort // G2 −G4

if m starts with hb|...|h2b−1 then
bad2 := true
abort // G3 −G4

if
∑

[m] = ⊥ then∑
[m]← {0, 1}2b

return
∑

[m]

Figure 7: Game G0 −G4
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uniformly at random from {0, 1}b and is hidden from the adversary. Therefore, the adversary
can only guess this value. By the union bound over all hash queries qh plus the one, which is
performed by the challenger during signature verification, we obtain Pr[bad1] ≤ qh+1

2b
. Since G1

and G2 are identical-until-bad games with respect to the bad1 flag, we have

|Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]| ≤ Pr[bad1] ≤
qh + 1

2b
.

G3 : G3 now also introduces the abort instruction in the green box. This game also aborts if a
message is queried that starts with hb|...|h2b−1. This abort instruction ensures that the adversary
cannot obtain the discrete logarithm of the commitments by querying the hash function. For
each individual query, the bad2 flag is set with a probability at most 1

2b
. The value h is the result

of a random oracle call with k as input. Since the adversary is unable to query the random oracle
with input k due to the abort condition introduced in G2, the adversary has no information
about h. Therefore, the adversary can only guess the value of h. By the union bound over
all hash queries qh plus the one hash, which is performed by the challenger during signature
verification, we obtain Pr[bad2] ≤ qh+1

2b
. Since G2 and G3 are identical-until-bad games with

respect to the bad2 flag, we have

|Pr[GA2 ⇒ 1]− Pr[GA3 ⇒ 1]| ≤ Pr[bad2] ≤
qh + 1

2b
.

G4 : G4 replaces the blue boxes in the main game and the Sign oracle with the orange boxes.
With this change, the hash value h and the discrete logarithm of the commitments r′ are
randomly chosen instead of being the result of the hash function call. This change is only
conceptual, since the aborts introduced in G2 and G3 ensure that the adversary cannot obtain
these values from the hash function, and therefore these values are random to the adversary.
Hence,

Pr[GA3 ⇒ 1] = Pr[GA4 ⇒ 1].

Now G4 is the same as SUF-CMA parameterized with EdDSA’. So we have

Pr[GA4 ⇒ 1] = AdvSUF-CMA
EdDSA’,A(λ).

This proves theorem 4.1.

The proof for the EUF-CMA security is the same as the proof for the SUF-CM security, with
the only difference being the win condition for the adversary. Now that EdDSA’ has been
introduced, and it has been shown that the adversary cannot distinguish between these signature
schemes in the SUF-CMA and EUF-CMA setting, the EdDSA’ signature scheme is used instead
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of the EdDSA signature scheme for the proofs in the following section. Using EdDSA’ makes
the proofs in the random oracle model easier.

5 The Security of EdDSA in a Single-User Setting

This section takes a closer look at the single-user security of the EdDSA signature scheme. This
is done by showing the SUF-CMA and EUF-CMA security of EdDSA with different styles of
signature parsing. The security based on the Ed-DLog assumption. The Ed-DLog assumption
is a variation of the original discrete logarithm problem, which takes the key clamping during
the key generation algorithm of EdDSA into account.

The two main theorems for the single-user security of EdDSAsp and EdDSAlp are:

Theorem 5.1 (Security of EdDSA with strict parsing in the single-user setting). Let A be an
adversary against the SUF-CMA security of EdDSA with strict parsing, making at most qh hash
queries and qo oracle queries, and G be a group of prime order L. Then,

AdvSUF-CMA
G,A (λ) ≤ AdvEd-DLog

E,n,c,L,B +
2(qh + 1)

2b
+

qo(qh + 1)⌈22b−1L ⌉
22b

Theorem 5.2 (Security of EdDSA with lax parsing in the single-user setting). Let A be an
adversary against the EUF-CMA security of EdDSA with lax parsing, making at most qh hash
queries and qo oracle queries, and G be a group of prime order L. Then,

AdvEUF-CMA
G,A (λ) ≤ AdvEd-DLog

E,n,c,L,B +
2(qh + 1)

2b
+

qo(qh + 1)⌈22b−1L ⌉
22b

The proof begins by showing that the EUF-NMA security of EdDSA implies the SUF-CMA/EUF-
CMA security of EdDSA with different types of parsing, in the random oracle model. With this
step, subsequent proofs can be performed without worrying about signature generation, and a
unified chain of reduction can be used to prove the security of EdDSA with both parsing vari-
ants. Next, an algebraic intermediate game Ed-IDLOG is introduced. This intermediate game
serves as a separation for proofs in the random oracle model and those in the algebraic group
model. Finally, the intermediate game Ed-IDLOG is reduced to the special discrete logarithm
variant Ed-DLog.

The chain of reductions can be depicted as:

Ed-DLog
AGM⇒ Ed-IDLOG

ROM⇒ EUF-NMA
ROM⇒ SUF-CMAEdDSA sp/EUF-CMAEdDSA lp

5.1 EUF-NMA
ROM⇒ SUF-CMAEdDSA sp

This section shows that the EUF-NMA security of EdDSA implies the SUF-CMA security of
EdDSA with strict parsing using the random oracle model. The section begins with an intuition
for the proof, followed by the detailed security proof.
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Sim (A)

ch← {0, 1}2b
s← {0, 1}2b
S :=

∑2b−1
i=0 2isi (mod L)

R := SB − chA
return (R, ch, S)

Figure 8: Sim

Theorem 5.3 ( [8]). Let A be an adversary against SUF-CMA, making at most qh hash queries
and qo oracle queries, and let G be a group of prime order L. Then,

AdvSUF-CMA
G,A (λ) ≤ AdvEUF-NMA

G,B (λ) +
qoqh⌈2

2b−1
L ⌉

22b
.

Proof Overview The EUF-NMA security definition is close to the SUF-CMA security defini-
tion, but lacks the Sign oracle. To show that EUF-NMA security implies SUF-CMA security,
the reduction must simulate the Sign oracle without knowledge of the private key.

The EdDSA signature scheme is based on the Schnorr signature scheme, which is a canonical
identification scheme to which the Fiat-Shamir transformation is applied. This means that
EdDSA roughly follows the structure of a canonical identification scheme by first computing
a commitment R, computing a challenge ch using the hash function, and then computing
the response S based on the commitment, challenge, and private key. The signature is the
commitment and response tuple.

To generate a signature without knowing the private key, the challenge and response are chosen
randomly, and the commitment is calculated based on the chosen challenge and response. The
random oracle is then programmed to output the challenge given the commitment and the
message as input. In this way, the resulting tuple of challenge and response is a valid signature
for the given message.

For the reduction to be able to program the random oracle, the adversary must not have queried
the hash function with this exact input before asking for the signature. Since the input to the
hash query includes the commitment, which is the result of a random function and therefore
unknown to the adversary prior to the Sign query. For this reason, the adversary can only guess
it.

This method of simulating the Sign oracle and the resulting loss of advantage was first intro-
duced in [8].

Formal Proof

Proof.

The proof begins by providing an algorithm that generates a correctly distributed tuple of
commitment, challenge, and response. This algorithm is called Sim and is shown in figure 8.
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Game G0 / G1 / G2 / G3

(h0, h1, ..., h2b−1)← {0, 1}2b
s← 2n +

∑n−1
i=c 2ihi

A := sB
(m∗, σ∗)← AH(·),Sign(·)(A)
return Verify(A,m∗, σ∗) ∧ (m∗, σ∗) /∈ Q

Oracle Sign (m ∈M) // G0 −G2

(r′0, r
′
1, ..., r

′
2b−1) = RF (hb|...|h2b−1|m)

r :=
∑2b−1

i=0 2ir′i
R := rB
S := (r + sH(R|A|m)) (mod L) // G0

if
∑

[R|A|m] ̸= ⊥ then // G1 −G2

bad := true
abort // G2

if
∑

[R|A|m] = ⊥ then∑
[R|A|m]← {0, 1}2b

S := (r + s
∑

[R|A|m]) (mod L)

σ := (R, S)
Q := Q ∪ {(m,σ)}
return σ

Oracle H(m ∈ {0, 1}∗)
if

∑
[m] = ⊥ then∑
[m]← {0, 1}2b

return
∑

[m]

Oracle Sign (m ∈M) // G3

(R, ch, S)← Sim(A)
if

∑
[R|A|m] ̸= ⊥ then

bad := true
abort∑
[R|A|m] = ch

σ := (R,S)
Q := Q ∪ {(m,σ)}
return σ

Figure 9: Games G0 −G3
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This procedure is taken from [8]. A proof can be found in the same paper. The formula for the
min-entropy of the commitment R is also taken from that paper.

G0 : Let G0 be defined in figure 9 by excluding all boxes except the black one. Clearly G0 is
the game SUF-CMA for EdDSA. By definition,

AdvSUF-CMA
G,A (λ) = Pr[SUF-CMAA ⇒ 1] = Pr[GA0 ⇒ 1].

G1 : G1 is now defined by replacing the black box with the blue one. This change inlines the
call to the hash function and introduces a bad flag in the Sign oracle, which is set in case the
hash value for the challenge is already set before the Sign oracle is called. In this cases the
adversary already queried the challenge for that signature, resulting in the challenger not being
able to program the random oracle on that input. Without being able to program the random
oracle the challenger is not able to generate a valid signature, without knowing the private key.
This change is only conceptual, since it does not change the behavior of the oracle and only
changes internal variables of the game. Therefore,

Pr[GA0 ⇒ 1] = Pr[GA1 ⇒ 1].

G2 : G2 also contains the abort statement in the red box. The abort condition is triggered
when the bad flag is set. Without loss of generality, it is assumed that the adversary queries the
Sign oracle only once for each message, since the signature generated is deterministic and an
adversary would not gain more information by multiple queries on the same message. For each
individual signature query, the probability of the bad flag being set is at most qh

2− log2(⌈
22b−1

L
⌉2−2b)

.

The only parameter of the hash function that is unknown to the adversary prior to calling
the Sign oracle is the commitment R. For an adversary to trigger the abort condition, he
must guess the commitment R used during one of the Sign queries. − log2(⌈2

2b−1
L ⌉2−2b) is the

min-entropy of R. r′ is chosen uniformly at random from {0, 1}2b and then reduced modulo
L when multiplied by the generator B. At first there are 22b possible values for r′. After
the reduction modulo L there are min{22b, L} possible values for r′. If the values of L are
less than 22b (which is the case in most instances of EdDSA), then the r′’s are not uniformly
distributed in ZL. Since an adversary could use this information, the min entropy of R must
be considered, which takes this into account. By the Union bound over all oracle queries qo we
obtain Pr[bad] ≤ qoqh

2− log2(⌈
22b−1

L
⌉2−2b)

. Since G1 and G2 are identical-until-bad games, we have

|Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]| ≤ Pr[bad] ≤
qoqh⌈2

2b−1
L ⌉

22b
.
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Adversary BH(·)(A)

(m∗, σ∗)← AH′(·),Sign(·)(A)
return (m∗, σ∗)

Oracle Sign (m ∈M)

(R, ch, S)← Sim(A)
if

∑
[R|A|m] ̸= ⊥ then

bad := true
abort∑
[R|A|m] = ch

σ := (R, S)
Q := Q ∪ {(m,σ)}
return σ

Oracle H ′(m ∈ {0, 1}∗)
if

∑
[m] = ⊥ then∑
[m] := H(m)

return
∑

[m]

Figure 10: Adversary B breaking EUF-NMA

G3 : G3 replaces the Sign oracle with the Sign oracle in the green box. Now the signature is
not generated by using the secret key, but by using the Sim procedure and manually setting
the result of the hash function call. This change is conceptual only. Sim returns a correctly dis-
tributed tuple (R, ch, S), with 2cSB = 2cR+2cchA, and it has been excluded that H ′(R|A|m)
is set before calling the Sign oracle, so that the random oracle can be programmed to output ch
when calling H ′(R|A|m). This ensures that 2cSB = 2cR + 2cH ′(R|A|m)A, which means that
σ := (R,S) is a valid signature for the message m and was generated without using the private
key s. Therefore,

Pr[GA2 ⇒ 1] = Pr[GA3 ⇒ 1].

Finally, Game G3 is well-prepared to show that there exists an adversary B satisfying

Pr[GA3 ⇒ 1] = AdvEUF-NMA
G,B (λ). (5.1)

To prove (5.1), an adversary B is defined that attacks EUF-NMA simulating the view of A in
G3. The adversary B, formally defined in figure 10, is run in the EUF-NMA game, and the
adversary B simulates Sign for the adversary A. Sign is simulated perfectly. The hash queries
of A are forwarded to the EUF-NMA challenger, when not set by the reduction itself.

Finally, considerA’s output (m∗, σ∗ := (R∗, S∗)). It is known that 2cS∗B = 2cR∗+2cH ′(R∗|A|m∗)A.
If strict parsing is used to decode S from the signature, it is known that 0 ≤ S < L. Therefore,
for every R, m pair, there is only one valid encoded S that satisfies the equation. This means
that a new and valid signature cannot be generated by simply changing the S value of an already
valid signature. Therefore, R or m must also be changed in order to create a new valid signature
from another. Since R and m are inputs to the hash query used to generate the challenge, the
result of this hash query is passed from the H hash oracle provided to the adversary B instead

28



of being set by B itself. Also, the existence of multiple encodings of the commitment R does
not pose a problem, since if another representation of the same R is chosen, its hash value for
the corresponding challenge has not been set by B and therefore must have been passed from
the EUF-NMA challenger. For this reason, H ′(R∗|A|m∗) = H(R∗|A|m∗). Therefore,

2cS∗B = 2cR∗ + 2cH ′(R∗|A|m∗)A
⇔ 2cS∗B = 2cR∗ + 2cH(R∗|A|m∗)A.

This means that the forged signature of the adversary A is also a valid signature in the EUF-
NMA game.

The runtime of adversary B is roughly the same as the runtime of adversary A. Simulating a
Sign query simply executes the ppt procedure Sim and sets the hash function output, the hash
function H ′ simply forwards the query to the H hash function, and the adversary B simply calls
A and outputs its forged signature.

This proves theorem 5.3.

5.2 EUF-NMA
ROM⇒ EUF-CMAEdDSA lp

This section shows that the EUF-NMA security of EdDSA implies the EUF-CMA security of
EdDSA with lax parsing using the random oracle model. This proof is very similar to the proof
of the SUF-CMA security of EdDSA with strict parsing. The modification of the games is
the same as in the proof above, with the only difference being the winning condition, which is
Verify(A,m∗, σ∗) ∧m∗ /∈ Q. For this reason, this proof begins by showing the existence of an
adversary B who breaks EUF-NMA security. The SUF-CMA security cannot be proved because
there may be multiple encodings of S that map to the same S (mod L), and therefore a new
valid signature could be forged from an old one by simply choosing a different encoding of S,
which would cause the output H ′(R∗|A|m∗) to be set by the reduction itself, and therefore the
forged signature would not be a valid signature for the EUF-NMA challenger.

Theorem 5.4 ( [8]). Let A be an adversary against EUF-CMA, making at most qh hash queries
and qo oracle queries, and G be a group of prime order L. Then,

AdvEUF-CMA
G,A (λ) ≤ AdvEUF-NMA

G,B (λ) +
qoqh⌈2

2b−1
L ⌉

22b
.

Formal Proof

Proof.

Pr[GA3 ⇒ 1] = AdvEUF-NMA
G,B (λ). (5.2)

To prove (5.2), we define an adversary B attacking EUF-NMA that simulates the view of A
in G3. The adversary B formally defined in figure 11 is run in the EUF-NMA game and the
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Adversary BH(·)(A)

(m∗, σ∗)← AH′(·),Sign(·)(A)
return (m∗, σ∗)

Oracle Sign (m ∈M)

1: (R, ch, S)← Sim(A)
2: if

∑
[R|A|m] ̸= ⊥ then

3: bad := true
4: abort
5:

∑
[R|A|m] = ch

6: σ := (R, S)
7: Q := Q ∪ {m}
8: return σ

Oracle H ′(m ∈ {0, 1}∗)
if

∑
[m] = ⊥ then∑
[m] := H(m)

return
∑

[m]

Figure 11: Adversary B breaking EUF-NMA

adversary B simulates Sign for the adversary A. Sign is simulated perfectly. The hash queries
of A are forwarded to the EUF-NMA challenger, when not set by the reduction itself.

Finally, considerA output (m∗, σ∗ := (R∗, S∗)). It is known that 2cS∗B = 2cR∗+2cH ′(R∗|A|m∗)A.
Because we are in the EUF-CMA setting, the adversary A is required to provide a signature
for a message m∗ for which it has not requested a signature from the Sign oracle. Since the
signature for the message m∗ was not requested in the Sign oracle, the output of H ′(R∗|A|m∗)
was not set by the adversary B, but must have been forwarded from the H hash oracle. For
this reason, H ′(R∗|A|m∗) = H(R∗|A|m∗). Therefore,

2cS∗B = 2cR∗ + 2cH ′(R∗|A|m∗)A
⇔ 2cS∗B = 2cR∗ + 2cH(R∗|A|m∗)A.

This means that the forged signature of the adversary A is also a valid signature in the EUF-
NMA game.

Since the adversary B is the same as in the proof above, the runtime is roughly the same as the
runtime of A, for the same reasons.

This proves theorem 5.4.

5.3 Ed-IDLOG
ROM⇒ EUF-NMA

This section shows that Ed-IDLOG implies the EUF-NMA security of the EdDSA signature
scheme using the random oracle model. The section begins with the introduction of an in-
termediate game Ed-IDLOG, followed by an intuition of the proof and the detailed security
proof.

Introducing Ed-IDLOG The intermediate game Ed-IDLOG is introduced to create a separa-
tion between proofs in the random oracle model and the algebraic group model. This is achieved
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by replacing the random oracle with the Chall oracle, which takes a commitment and issues a
challenge. This also removes the message and focuses on forging an arbitrary signature. The
Ed-IDLOG game is shown in figure 12. The game has been inspired by the IDLOG game
from [12].

Definition 5.1 (Ed-IDLOG). For an adversary A. The advantage of A in the Ed-IDLOG
game is defined as following:

AdvEd-IDLOG
G,A (λ) := |Pr[Ed-IDLOGA ⇒ 1]|.

Game Ed-IDLOG
a← {2n−1, 2n−1 + 2c, ..., 2n − 2c}
A := aB
s∗ ← AChall(·)(A)
return ∃(R∗, ch∗) ∈ Q : R∗ = 2cs∗B −
2cch∗A

Oracle Chall (Ri ∈ G)

chi ← {0, 1}2b
Q := Q ∪ {(Ri, chi)}
return chi

Figure 12: Ed-IDLOG

Theorem 5.5. Let A be an adversary against EUF-NMA. Then,

AdvEUF-NMA
G,A (λ) = AdvEd-IDLOG

G,B (λ).

Proof Overview The adversary must query the random oracle to obtain the hash valueH(R|A|m).
The programmability of the random oracle can be used to embed the challenge from the Chall
into the answer from the random oracle. In this way, a valid signature forgery also provides a
valid solution to the Ed-IDLOG game.

Game G0

(h0, h1, ..., h2b−1)← {0, 1}2b
s← 2n +

∑n−1
i=c 2ihi

A := sB
(m∗, σ∗)← AH(·)(A)
return Verify(A,m∗, σ∗)

Oracle H(m ∈ {0, 1}∗)
if

∑
[m] = ⊥ then∑
[m]← {0, 1}2b

return
∑

[m]

Figure 13: G0

Formal Proof

Proof.

This proof does not require any game hop, since the random oracle can be simulated using the
Chall oracle.
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G0 : Let G0 be defined in figure 13. Clearly, G0 is EUF-NMA. By definition,

AdvEUF-NMA
G,A (λ) = Pr[EUF-NMAA ⇒ 1] = Pr[GA0 ⇒ 1].

G0 is well-prepared to show that there exists an adversary B satisfying

Pr[GA0 ⇒ 1] = AdvEd-IDLOG
G,B (λ). (5.3)

Adversary BChall(·)(A)

(m∗, σ∗ := (R, S))← AH(·)(A)
return S

Oracle H(m ∈ {0, 1}∗)
if

∑
[m] = ⊥ then

if R|A|m′ := m ∧R ∈ E then∑
[m]← Chall(2cR)

else∑
[m]← {0, 1}2b

return
∑

[m]

Figure 14: Adversary B breaking Ed-IDLOG

To prove (5.3), we define an adversary B attacking Ed-IDLOG that simulates the view of A
in G0. The adversary B formally defined in figure 14 is run in the Ed-IDLOG game, and the
adversary B simulates the random oracle H for the adversary A. H is perfectly simulated
because the Chall oracle also outputs a uniformly random 2b-bit bitstring. For this reason, H
returns a uniformly random 2b-bit bitstring for all queries, as expected.

Finally, consider A’s output (m∗, σ∗ := (R,S)). It is known that:

2cSB = 2cR+ 2cH(R|A|m)A

⇔ 2cR = 2cSB − 2cH(R|A|m)A

⇔ 2cR = 2cSB − 2cChall(2cR)A

⇔ R′ = 2cSB − 2cChall(R′)A

Therefore, S is a valid solution for the Ed-IDLOG game.

The runtime of adversary B is roughly the same as the runtime of adversary A, since it just
outputs the solution of A, and in the random oracle it either calls the Chall oracle or samples
a value uniformly at random.

This proves theorem 5.5.

5.4 Ed-DLog
AGM⇒ Ed-IDLOG

This section shows that Ed-DLog implies Ed-IDLOG using the algebraic group model. The
section begins with an introduction to a special variant of the discrete logarithm problem,
followed by an intuition of the proof, and finally a detailed security proof.
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Introducing Ed-DLog The Ed-DLog game is a variant of the discrete logarithm game that
represents the clearing and setting of bits in the secret scalar during EdDSA key generation. The
only difference to the normal discrete logarithm game is that the secret scalars are not randomly
chosen from ZL, where L is the order of the generator, but from the set {2n−1, 2n−1+2c, ..., 2n−
2c}. This set represents all valid private keys according to the key generation algorithm. The
hardness of this version of the discrete logarithm problem is further analyzed in section 7.1.
The Ed-DLog game is illustrated in figure 15.

Definition 5.2 (Ed-DLog). For an adversary A we define its advantage in the Ed-DLog game
as following:

AdvEd-DLog
G,A (λ) := |Pr[Ed-DLogA ⇒ 1]|.

Game Ed-DLog
a← {2n−1, 2n−1 + 2c, ..., 2n − 2c}
A := aB
a′ ← A(A)

return a
?
= a′

Figure 15: Ed-DLog

Theorem 5.6. Let A be an adversary against Ed-IDLOG with G being a cyclic group of prime
order L, making at most qo oracle queries. Then

AdvEd-IDLOG
G,A (λ) ≤ AdvEd-DLog

G,B (λ) +
qo⌈2

2b−1
L ⌉

22b
.

Proof Overview The adversary must call the Chall oracle with a commitment R to get a
challenge from the challenger. Due to the nature of the algebraic group model, the adversary
must also provide a representation of the group element R as a linear combination of all known
group elements. Since only the generator of the group and the public key are known to the
adversary, the representation looks like this: R = r1B + r2A. Together with a valid solution
to the Ed-IDLOG game, this can be used to compute the discrete logarithm of the public
key.

Formal Proof

Proof.

The proofs begin by showing that the only valid representation of a group element in the prime
order subgroup is the one relative to all known elements in the subgroup and cannot include
elements from outside the subgroup. This is followed by a discussion of the individual game-
hops.
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Game G0 / G1 / G2

a← {2n−1, 2n−1 + 8, ..., 2n − 8}
A := aB
s∗ ← AChall(·)(A)
return ∃(R∗, ch∗) ∈ Q : R∗ = 2c(s∗B −
ch∗A)

Oracle Chall ([Ri]⇀ri ∈ G)

1: Let Ri = r1B + r2A
2: chi ← {0, 1}2b
3: If 2cchi ≡ −r2 (mod L) then // G1 −

G2

4: bad := true
5: abort // G2

6: Q := Q ∪ {(Ri, chi)}
7: return chi

Figure 16: Games G0 −G2

AGM This proof is done in the algebraic group model. This means that the adversary has to
provide a representation along each group element he provides to the reduction. The adversary
must provide an element R which is an element in the prime order subgroup of the twisted
Edwards curve. The question remains whether the representation should be defined relative to
the prime order subgroup or the twisted Edwards curve. The answer to this question is that it
is sufficient to define the representation relative to the prime order subgroup. The reason for
this is given in the following paragraph.

The twisted Edwards curve E over the finite field Fq is a finite abelian group. Even though the
group E may not be cyclic, the Fundamental Theorem of Finitely Generated Abelian Groups
tells us that every finite abelian group can be uniquely decomposed into the direct product of
cyclic subgroups [30]. This means that E can be written as E = ⟨a1⟩

⊗
⟨a2⟩

⊗
...
⊗
⟨an⟩. The

set of generators for each of the cyclic groups is called the generating set of E. Let us recall a
well-known theorem of algebra:

Theorem 5.7 (Characterization of Inner Direct Products [31]). Let N1, ..., Nn be subgroups of
a group G. Following statements are equivalent:

(1) N1, ..., Nn ⊴ G and G = N1
⊗

...
⊗

Nn.

(2) Each x ∈ G can uniquely be represented in the following way:

x = ai · ... · an, ai ∈ Ni

Due to Sylow’s theorems, the decomposition must include the large prime order subgroup G
used for EdDSA [32], and since twisted Edwards curves (like all elliptic curves) are abelian,
each subgroup is also a normal subgroup. Together this means that the representation of each
element X ∈ E is unique relative to the generating set. Since each element Y ∈ G can be
represented as Y := yB, where B is the generator of the prime order subgroup, this must be
the only representation with respect to the generating set. This means that an adversary, in
the algebraic group model, must provide a representation in the prime order subgroup G.

The only two group elements in G provided to the adversary are the public key A and the
generator B. Therefore, the representation of the element R, provided to the Chall oracle,
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looks like R = r1B + r2A.

G0: Let G0 be defined in figure 16 by excluding all boxes. G0 is the same as Ed-IDLOG. By
definition,

AdvEd-IDLOG
G,A (λ) = Pr[Ed-IDLOGA ⇒ 1] = Pr[GA0 ⇒ 1].

G1: Game G1 is exactly the same as G0 with the only change being that the bad flag is set
inside an if condition. The bad flag is set when 2cchi = −r2. This represents cases where not
all solutions from the adversary A can be used to calculate the discrete logarithm of A. This is
only a conceptual change, since the behavior of the game does not change whether the flag is
set or not. Hence,

Pr[GA0 ⇒ 1] = Pr[GA1 ⇒ 1].

G2 : The game G2 is aborted if the bad flag is set. For each individual Chall query, the bad flag
is set with probability at most 1

2− log2(⌈
22b−1

L
⌉2−2b)

. chi is chosen by the game after the adversary

has provided the representation of Ri and thus the value of r2. This way the adversary has
no way to choose chi after r2 and therefore cannot influence the probability of the abort being
triggered. − log2(⌈2

2b−1
L ⌉2−2b) is the min entropy of chi (mod L). chi is chosen uniformly at

random from {0, 1}2b and then reduced modulo L during the if condition check. By the union
bound over all oracle queries qo we obtain Pr[bad] ≤ qo

2− log2(⌈
22b−1

L
⌉2−2b)

. Since G1 and G2 are

identical-until-bad games, we have

|Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]| ≤ Pr[bad] ≤
qo⌈2

2b−1
L ⌉

22b
.

Finally, Game G2 is well-prepared to show that there exists an adversary B satisfying

Pr[GA2 ⇒ 1] = AdvEd-DLog
G,B (λ). (5.4)

To prove (5.4), we define an adversary B attacking Ed-DLog, which simulates the view of A in
G2. The adversary B formally defined in figure 17 is run in the Ed-DLog game and adversary
B simulates Chall for adversary A. The Chall oracle is simulated perfectly.

Finally, consider A’s output s∗. We know that one R∗ = 2cs∗B − 2cch∗A. We can use this
together with the representation of R∗ to get the following equation:
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Adversary B(A)
s∗ ← AChall(·)(A)
If ∄[R∗]⇀

r∗
, ch∗ : R∗ = 2c(s∗B − ch∗A) ∧

([R∗]⇀
r∗
, ch∗) ∈ Q then

abort
Let R∗ = r1B + r2A
return (2cs∗ − r1)(r2 + 2cch∗)−1

Oracle Chall ([Ri]⇀ri ∈ G)

Let Ri = r1B + r2A
chi ← {0, 1}2b
If 2cchi ≡ −r2 (mod L) then
bad := true
abort

Q := Q ∪ {([Ri]⇀ri , chi)}
return chi

Figure 17: Adversary B breaking Ed-DLog

r1B + r2A = 2cs∗B − 2cch∗A

⇔ (r2 + 2cch∗)A = (2cs∗ − r1)B

⇔ A = (2cs∗ − r1)(r2 + 2cch∗)−1B

Assuming that r2 + 2cch∗ is invertible in ZL (i.e. not equal to 0), which is ensured due to the
abort in G2, both equations can be used to calculate the discrete logarithm of A.

Obviously, the runtime of B is roughly the same as the runtime of A. The Chall just samples the
challenge uniformly at random and returns it after checking the abort condition. After A has
provided its solution, adversary B just does some additions, multiplications, and an inversion,
which does not add much to its runtime.

This proves theorem 5.6.

By combining the loss of advantage during all of the proofs above, combined with the loss
introduced by EdDSA’, a proof for theorem 5.1 and 5.2 is obtained.

6 The Security of EdDSA in a Multi-User Setting

Now that the single-user security of EdDSA got analyzed, we can take a look at its multi-user
security. A common approach for Schnorr-like signature schemes is to show it using the random
self-reducibility property of the canonical identification scheme as done in [12]. This approach
does not work with the EdDSA signature scheme as the underlying identification scheme does
not have this random self-reducibility property, since the reduction is not able to rerandomize
a public key in a way preserving the distribution of the key generation algorithm. This is due
to the fact that valid secret scalar always has to have the n-th bit set.

Therefore, a similar approach to the proof in the single-user setting is used. It is not possible
to reduce onto the Ed-DLog problem directly since the adversary gets multiple public keys and
therefore might not provide a representation of the commitment looking like R = r1B + r2A,
which was needed for the discrete logarithm of the public key to be calculated. For this reason
a variant of the one-more discrete logarithm assumption (OMDL) has to be used, as introduced
in [24].
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The proof starts by showing that the N -MU-EUF-NMA security of EdDSA implies N -MU-SUF-
CMA security of EdDSA in the random oracle model. Next an intermediate game is introduced
onto which the N -MU-EUF-NMA security of EdDSA is reduced. At last, the security of the
intermediate game is reduced onto the security of the variant of the one-more discrete logarithm
assumption.

The two main theorems for the multi-user security of EdDSAsp and EdDSAlp are:

Theorem 6.1 (Security of EdDSA with strict parsing in the multi-user setting). Let A be
an adversary against the N -MU-SUF-CMA security of EdDSA with strict parsing, receiving N
public keys and making at most qh hash queries and qo oracle queries, and G be a group of
prime order L. Then,

AdvN-MU-SUF-CMA
G,A (λ) ≤ AdvN-Ed-DLog-Reveal

E,n,c,L,B +
2(qh + 1)

2b
+

qo(qh +N)⌈22b−1L ⌉
22b

Theorem 6.2 (Security of EdDSA with lax parsing in the multi-user setting). Let A be an
adversary against the N -MU-EUF-CMA security of EdDSA with lax parsing, receiving N public
keys and making at most qh hash queries and qo oracle queries, and G be a group of prime order
L. Then,

AdvN-MU-EUF-CMA
G,A (λ) ≤ AdvN-Ed-DLog-Reveal

E,n,c,L,B +
2(qh + 1)

2b
+

qo(qh +N)⌈22b−1L ⌉
22b

The chain of reductions can be depicted as:

N -Ed-DLog-Reveal
AGM⇒ Ed-IDLOG

ROM⇒ N -MU-EUF-NMA
ROM⇒ N -MU-SUF-CMAEdDSA sp

N -Ed-DLog-Reveal
AGM⇒ Ed-IDLOG

ROM⇒ N -MU-EUF-NMA
ROM⇒ N -MU-EUF-CMAEdDSA lp

6.1 N-MU-EUF-NMA
ROM⇒ N-MU-SUF-CMAEdDSA sp

This section shows that the N -MU-EUF-NMA security of the EdDSA signature scheme implies
the N -MU-SUF-CMA security of the EdDSA signature scheme using the random oracle model.
The section starts with providing an intuition of the proof, followed by the detailed security
proof.

Theorem 6.3. Let n and N be positive integer and A an adversary against N -MU-SUF-CMA,
receiving N public keys and making at most qh hash queries and qo oracle queries. Then,

AdvN-MU-SUF-CMA
A (λ) ≤ AdvN-MU-EUF-NMA

B (λ) +
qoqh⌈2

2b−1
L ⌉

22b
.
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Proof Overview This proof closely follows the proof in section 5.1. The only difference of
both security notions is the absence of the Sign oracle in N -MU-EUF-NMA. For this reason,
the reduction must simulate the Sign oracle without the knowledge of the private keys. This
is achieved by generating a valid and well-distributed tuple of commitment, challenge, and
response using the Sim procedure, introduced in section 5.1, and then programming the random
oracle to output that challenge for the corresponding input. The different games are shown in
figure 18.

Game G0 / G1 / G2 / G3

for j ∈ {1, 2, ..., N}
(hj0 , hj1 , ..., hj2b−1

)← {0, 1}2b
sj ← 2n +

∑n−1
i=c 2ihji

Aj := sjB
(m∗, σ∗)← AH(·),Sign(·,·)(A1, A2, ..., AN)
return ∃j ∈ {1, 2, ..., N} :
Verify(Aj,m

∗, σ∗) ∧ (Aj,m
∗, σ∗) /∈ Q

Oracle Sign (j ∈ {1, 2, ..., N}, m ∈M)

// G0 −G2

(r′0, r
′
1, ..., r

′
2b−1) = RF (hjb |...|hj2b−1

|m)

r :=
∑2b−1

i=0 2ir′i
R := rB
S := (r + sH(R|Aj|m)) (mod L) // G0

if
∑

[R|Aj|m] ̸= ⊥ then // G1 −G2

bad := true
abort // G2

if
∑

[R|Aj|m] = ⊥ then∑
[R|Aj|m]← {0, 1}2b

S := (r + s
∑

[R|Aj|m]) (mod L)

σ := (R, S)
Q := Q ∪ {(Aj,m, σ)}
return σ

Oracle H(m ∈ {0, 1}∗)
if

∑
[m] = ⊥ then∑
[m]← {0, 1}2b

return
∑

[m]

Oracle Sign (j ∈ {1, 2, ..., N}, m ∈M) //
G3

(R, ch, S)← Sim(Aj)
if

∑
[R|Aj |m] ̸= ⊥ then

bad := true
abort∑
[R|Aj |m] = ch

σ := (R,S)
Q := Q ∪ {(Aj ,m, σ)}
return σ

Figure 18: Games G0 −G3

Formal Proof

Proof.

Now the original N -MU-SUF-CMA game is manipulated in a way that makes it possible to
simulate signatures without the knowledge of the secret key. During each of the game-hops the
probability for an adversary to detect this change is upper bounded.
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G0 : Let G0 be defined in figure 18 by excluding all boxes except the black one. G0 is the
N -MU-SUF-CMA for EdDSA. By definition,

AdvN -MU-SUF-CMA
EdDSA,A (λ) = Pr[N -MU-SUF-CMAA ⇒ 1] = Pr[GA0 ⇒ 1].

G1 : G1 now is defined by replacing the black box with the blue one. This change inlines the
call to the hash function and introduces a bad flag, which is set if the hash value is already
set. The bad flag being set represents cases where the adversary already queried the random
oracle for the challenge used for that signature and therefore the random oracle cannot be
programmed. This results in the challenger not being able to produce a valid signature. This
change is only conceptual, as it does not alter the behavior of the oracle. Therefore,

Pr[GA0 ⇒ 1] = Pr[GA1 ⇒ 1].

G2 : G2 is defined by also introducing the abort instruction in the red box. Again, without
loss of generality it is assumed that the adversary only queried each public key/message pair
only once since the signatures are deterministic and the attacker would not gain any additional
information by querying the Sign oracle multiple times with the same input. Since the commit-
ment R is the only unknown input to the hash function, the probability of the bad flag being
set for each individual Sign query is at most qh

2− log2(⌈
22b−1

L
⌉2−2b)

. By the Union bound over all

oracle queries qo we obtain Pr[bad] ≤ qoqh

2− log2(⌈
22b−1

L
⌉2−2b)

. Since G1 and G2 are identical-until-bad

games, we have

|Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]| ≤ Pr[bad] ≤
qoqh⌈2

2b−1
L ⌉

22b
.

G3 : InG3 the Sign oracle is replaced by the Sign oracle in the green box. Instead of calculating
the response using the secret key, the Sim algorithm is used to generate a tuple of commitment,
challenge, and response. Then the random oracle is programmed to output the specific challenge
given R|Aj |m as an input. This change is only conceptual, since Sim outputs a correctly
distributed set and it was ruled out in earlier games that the random oracle was previously
queries with this input. Hence,

Pr[GA2 ⇒ 1] = Pr[GA3 ⇒ 1].
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Finally, Game G3 is well prepared to show that there exists an adversary B satisfying

Pr[GA3 ⇒ 1] = AdvN -MU-EUF-NMA
B (λ). (6.5)

Adversary BH(·)(A1, A2, ..., AN)

(m∗, σ∗)← AH′(·),Sign(·,·)(A1, A2, ..., AN)
return (m∗, σ∗)

Oracle Sign (j ∈ {1, 2, ..., N}, m ∈M)

(R, ch, S)← Sim(Aj)
if

∑
[R|Aj|m] ̸= ⊥ then

bad := true
abort∑
[R|Aj|m] = ch

σ := (R, S)
Q := Q ∪ {(Aj,m, σ)}
return σ

Oracle H ′(m ∈ {0, 1}∗)
if

∑
[m] = ⊥ then∑
[m] := H(m)

return
∑

[m]

Figure 19: Adversary B breaking N -MU-EUF-NMA

To prove (6.5), we define an adversary B attacking N -MU-EUF-NMA that simulates A’s view
in G2. Adversary B formally defined in figure 19 is run in the N -MU-EUF-NMA game and
adversary B simulates Sign for adversary A. Sign is simulated perfectly.

Finally, consider A output (m∗, σ∗ := (R∗, S∗)). Every valid signature outputted by adversary
A has to fulfill the following equation for one public key Ai: 2cSB = 2cR + 2cH ′(R|Ai|m)Ai.
Again there is only one valid encoded S for each R, m, Ai tuple that satisfies the verification
equation. For the signature to be a valid forgery it must not be outputted by the Sign oracle
for this specific m∗ and Ai. No new valid signature can be generated from a valid one by just
changing the S value. This means that either R, m or Ai have to be changed to generate a new
valid signature from an already valid signature. Since all these parameters are part of the hash
query to generate the challenge the resulting hash value has to be forwarded from the H hash
oracle provided to the adversary B. For this reason H ′(R∗|Ai|m∗) = H(R∗|Ai|m∗). Hence,

2cS∗B = 2cR∗ + 2cH ′(R∗|Ai|m∗)Ai

⇔ 2cS∗B = 2cR∗ + 2cH(R∗|Ai|m∗)Ai

Since the public keys and the results of the hash queries are forwarded from the N -MU-EUF-
NMA challenger the forged signature from A in the N -MU-SUF-CMA game is also a valid
forgery for the N -MU-EUF-NMA challenger.

In the main procedure the adversary B simply calls adversaryA and outputs its forged signature.
To simulate the hash function B simply forwards the queries to adversary A and to a signature
B obtains the pair of commitment, challenge, and solution from the Sim procedure, which is
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just samples two values and calculates the last one using a simple equation, and then programs
its random oracle. Therefore, the runtime of adversary B is roughly the same as the runtime of
adversary A.

This proves theorem 6.3.

6.2 N-MU-EUF-NMA
ROM⇒ N-MU-EUF-CMAEdDSA lp

This section shows that N -MU-EUF-NMA security of EdDSA implies the N -MU-EUF-CMA
security of EdDSA with lax parsing used in the random oracle model. This proof is very
similar to the proof N -MU-SUF-CMA proof of EdDSA with strict parsing. The modification
to the games are the same as in the proof above with the only modifications being in the win
condition, which is ∃j ∈ {1, 2, ..., N} : Verify(Aj ,m

∗) ∧ (Aj ,m
∗) /∈ Q. For this reason this

proof starts at showing the existence of an adversary B breaking N -MU-EUF-NMA security.
Similar to the proof in the single-user setting, the SUF-CMA security of EdDSA with lax
parsing cannot be shown, as there are multiple valid encodings of S for one signature. This
way the adversary would be able to generate a new valid signature from an obtained one by
simply choosing a different encoding of S. This would result in the output of H ′(R∗|A|m∗)
being programmed by the reduction itself and therefore the signature not being valid for the
EUF-NMA challenger.

Theorem 6.4. Let n and N be positive integers and A an adversary against N -MU-EUF-CMA,
receiving N public keys and making at most qh hash queries and qo oracle queries. Then,

AdvN-MU-EUF-CMA
A (λ) ≤ AdvN-MU-EUF-NMA

B (λ) +
qoqh⌈2

2b−1
L ⌉

22b
.

Formal Proof

Proof.

Pr[GA3 ⇒ 1] = AdvN -MU-EUF-NMA
B (λ). (6.6)

To prove (6.6), we define an adversary B attacking N -MU-EUF-NMA that simulates A’s view
on G3. Adversary B, formally defined in figure 20, is run in the N -MU-EUF-NMA game and
simulates Sign for adversary A. Sign is simulated perfectly.

Finally, consider A output (m∗, σ∗ := (R∗, S∗)). Every valid signature outputted by adversary
A has to fulfill the following equation for one public key Ai: 2cSB = 2cR + 2cH ′(R|Ai|m)Ai.
Like in the single-user setting the adversary can create a new valid signature from an already
valid one by choosing a different bitstring representation of the S value that maps to the
same S (mod L). Since we are in the N -MU-EUF-CMA setting the adversary has to forge a
signature for a message m∗ and public key Ai to which it has not queried a signature before.
For this reason, the output of H ′(R∗|Ai|m∗) has not been set by the adversary B, but was
forwarded from the H hash oracle provided by the N -MU-EUF-NMA challenger. For this
reason H ′(R∗|Ai|m∗) = H(R∗|Ai|m∗). Therefore,
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Adversary BH(·)(A1, A2, ..., AN)

(m∗, σ∗)← AH′(·),Sign(·,·)(A1, A2, ..., AN)
return (m∗, σ∗)

Oracle Sign (j ∈ {1, 2, ..., N}, m ∈M)

(R, ch, S)← Sim(Aj)
if

∑
[R|Aj|m] ̸= ⊥ then

bad := true
abort∑
[R|Aj|m] = ch

σ := (R, S)
Q := Q ∪ {(Aj,m)}
return σ

Oracle H ′(m ∈ {0, 1}∗)
if

∑
[m] = ⊥ then∑
[m] := H(m)

return
∑

[m]

Figure 20: Adversary B breaking N -MU-EUF-NMA

2cS∗B = 2cR∗ + 2cH ′(R∗|Ai|m∗)Ai

⇔ 2cS∗B = 2cR∗ + 2cH(R∗|Ai|m∗)Ai.

This shows that the forged signature from adversary A is also a valid forged signature for the
N -MU-EUF-NMA challenger.

Since the adversary B is the same as in the proof above, its runtime is roughly the same as the
runtime of adversary A, for the same reason.

This proves theorem 6.4.

6.3 N-MU-Ed-IDLOG
ROM⇒ N-MU-EUF-NMA

This section shows that N -MU-Ed-IDLOG implies N -MU-EUF-NMA security of the EdDSA
signature scheme using the Random Oracle Model. The section starts by first providing an
intuition of the proof followed by the detailed security proof.

Introducing N-MU-Ed-IDLOG This game follows closely the definition of the Ed-IDLOG
game. It again replaces the random oracle with the Chall oracle. The only difference to the
Ed-IDLOG game is that the adversary gets access to N public keys. The adversary again has
to output a valid result for any commitment challenge pair generated by the Chall oracle for
any of the public keys. The N -MU-Ed-IDLOG game is depicted in figure 21.

Definition 6.1 (N -MU-Ed-IDLOG). Let n and N be positive integers. For an adversary A,
receiving N public keys as input, we define its advantage in the N -MU-Ed-IDLOG as following:

AdvN-MU-Ed-IDLOG
A (λ) := |Pr[N -MU-Ed-IDLOGA ⇒ 1]|.
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Game N -MU-Ed-IDLOG
for i ∈ {1, 2, ..., N}
ai ← {2n−1, 2n−1 + 2c, ..., 2n − 2c}
Ai := aiB

s∗ ← AChall(·)(A1, A2, ..., AN)
return ∃(R∗, ch∗) ∈ Q, i ∈ {1, 2, ..., N} ∈: R∗ = 2cs∗B − 2cch∗Ai

Oracle Chall (Ri ∈ G)

chi ← {0, 1}2b
Q := Q ∪ {(Ri, chi)}
return chi

Figure 21: N -MU-Ed-IDLOG

Theorem 6.5. Let A be an adversary against N -MU-Ed-IDLOG. Then,

AdvN-MU-EUF-NMA
A (λ) = AdvN-MU-Ed-IDLOG

B (λ).

Proof Overview Like the single-user setting the adversary has to query the random oracle to
get the hash value H(R|Ai|m). Again the programmability of the random oracle can be used
to embed the challenge from Chall oracle into the answer of the random oracle. By embedding
the challenge from the Chall oracle answer into the answer of the random oracle, a valid forgery
of the signature also becomes a valid solution for the N -MU-Ed-IDLOG game.

Game G0

for i ∈ {1, 2, ..., N}
(hi0 , hi1 , ..., hi2b−1

)← {0, 1}2b
si ← 2n +

∑n−1
i=c 2ihi

Ai := siB
(m∗, σ∗)← AH(·)(A1, A2, ..., AN)
return ∃i ∈ {1, 2, ..., N} :
Verify(Ai,m

∗, σ∗)

Oracle H(m ∈ {0, 1}∗)
if

∑
[m] = ⊥ then∑
[m]← {0, 1}2b

return
∑

[m]

Figure 22: G0

Formal Proof

Proof.

Now it is argued that the Chall oracle can be used to simulate the hash function in a way
that the answer of the N -MU-EUF-NMA adversary can be used as an valid solution for the
N -MU-Ed-IDLOG challenger.

Let G0 be defined in figure 22. Then G0 is the same as N -MU-EUF-NMA with EdDSA. By
definition,
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AdvN -MU-EUF-NMA
EdDSA,A (λ) = Pr[N -MU-EUF-NMAA ⇒ 1] = Pr[GA0 ⇒ 1].

G0 is well-prepared to show that there exists an adversary B satisfying

Pr[GA0 ⇒ 1] = AdvN -MU-Ed-IDLOG
G,B (λ). (6.7)

Adversary BChall(·)(A1, A2, ..., AN)

(m∗, σ∗ := (R, S))← AH(·)(A1, A2, ..., AN)
return S

Oracle H(m ∈ {0, 1}∗)
if

∑
[m] = ⊥ then

if R|A|m′ := m ∧R,A ∈ E then∑
[m]← Chall(2cR)

else∑
[m]← {0, 1}2b

return
∑

[m]

Figure 23: Adversary B breaking Ed-IDLOG

To proof (6.7), we define an adversary B attacking N -MU-Ed-IDLOG that simulates A’s view
in G0. Adversary B formally defined in figure 23 is run in the Ed-IDLOG game and adversary
B simulates the random oracle H for the adversary A. H is perfectly simulated because the
Chall oracle also outputs a uniformly random 2b-bit bitstring. For this reason, H returns a
uniformly random 2b-bit bitstring for all queries, as expected.

Finally, consider A’s output (m∗, σ∗ := (R,S)). It is known that:

2cSB = 2cR+ 2cH(R|Ai|m)Ai

⇔ 2cR = 2cSB − 2cH(R|Ai|m)Ai

⇔ 2cR = 2cSB − 2cChall(2cR)Ai

R′ = 2cSB − 2cChall(R′)Ai

Therefore, S is a valid solution for the N -MU-Ed-IDLOG game.

This proves theorem 6.5.

6.4 N-Ed-DLog-Reveal
AGM⇒ N-MU-Ed-IDLOG

This section shows thatN -Ed-DLog-Reveal impliesN -MU-Ed-IDLOG using the algebraic group
model. The section starts by introducing a special variant of the one-more discrete logarithm
problem followed by an intuition of the proof and at last giving a detailed security proof.
The reduction cannot be directly performed using the Ed-DLog assumption, since the repre-
sentation of the commitment contains more than one group element with unknown discrete
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logarithm, because the adversary against N -MU-Ed-IDLOG receives multiple public keys as
input. Therefore, a new assumption, based on the one-more discrete logarithm assumption, has
to be introduced.

Introducing N-Ed-DLog-Reveal Similar to Ed-DLog, which is a variant of the discrete log-
arithm problem the N -Ed-DLog-Reveal is a variant of the one-more discrete logarithm prob-
lem, which represents the special distribution of secret keys resulting from the key generation
algorithm of the EdDSA signature scheme. The only differences to the original one-more dis-
crete logarithm game as introduced in [24] are that the secret scalars are chosen from the set
{2n−1, 2n−1 + 2c, ..., 2n − 2c} which represents all valid secret scalars regarding the key gener-
ation algorithm and that the adversary is only able to query N − 1 discrete logarithms of the
challenge group elements at once. This modification makes the assumption weaker than the
original one-more discrete logarithm assumption. Since the resulting game is similar to the
N -discrete logarithm problem with an additinal Reveal query, it is called N -Ed-DLog-Reveal.
A lower bound on the hardness of the N -Ed-DLog-Reveal problem is further analyzed in section
7.2. The N -Ed-DLog-Reveal game is illustrated in figure 24.

Definition 6.2 (N -Ed-DLog-Reveal). Let n and N be positive integers. For an adversary A,
receiving N challenge group elements, we define its advantage in the N -Ed-DLog-Reveal game
as following:

AdvN-Ed-DLog-Reveal
A (λ) := |Pr[N -Ed-DLog-RevealA ⇒ 1]|.

Game N -Ed-DLog-Reveal
for i ∈ {1, 2, ..., N}
ai ← {2n−1, 2n−1 + 2c, ..., 2n − 2c}
Ai := aiB

(a′1, a
′
2, ..., a

′
N)← AReveal(·)(A1, A2, ..., AN)

return (a1, a2, ..., aN)
?
= (a′1, a

′
2, ..., a

′
N)

Oracle Reveal(j ∈ {1, 2, ..., N}) // max. one query

return {ai|i ∈ {1, 2, ..., N}\{j}}

Figure 24: N -Ed-DLog-Reveal

Theorem 6.6. Let A be an adversary against Ed-IDLOG with G being a cyclic group of prime
order L, receiving N public keys and making at most qo oracle queries. Then

AdvN-MU-Ed-IDLOG
G,A (λ) ≤ AdvN-Ed-DLog-Reveal

G,B (λ) +
qoN⌈2

2b−1
L ⌉

22b
.

Proof Overview In the multi-user setting the adversary gets access to not only the generator
B and one public key A but rather a set of public keys A1 to AN . For this reason, the
representation of a group element, the adversary has to provide, looks the following: R =
r1B + r2A1 + ... + rN+1AN . Since there are multiple group elements with unknown discrete
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logarithms it is not possible to directly calculate the discrete logarithm of one of the public keys
given a valid forgery of a signature. Upon receiving a valid solution the Reveal oracle can be used
to get the discrete logarithm of all the public keys except the one for which the solution is valid.
This way it is again possible to construct a representation looking like R = r1B + r2Ai. Then
it is again possible to calculate the discrete logarithm of Ai and win the N -Ed-DLog-Reveal
game.

Game G0 / G1 / G2

for i ∈ {1, 2, ..., N}
ai ← {2n−1, 2n−1 + 2c, ..., 2n − 2c}
Ai := aiB

s∗ ← AChall(·)(A1, A2, ..., AN)
return ∃(R∗, ch∗) ∈ Q, i ∈ {1, 2, ..., N} : R∗ = 2cs∗B − 2cch∗Ai

Oracle Chall ([R]⇀
r
∈ G)

Let R = r1B + r2A1 + ...+ rN+1AN

ch← {0, 1}2b
If ∃i ∈ {2, 3, ..., N + 1} : 2cch ≡ −ri (mod L) then // G1 −G2

bad := true
abort // G2

Q := Q ∪ {(R, ch)}
return ch

Figure 25: Games G0 −G2

Formal Proof

Proof.

Now the individual game-hops are analyzed and the probability, that an adversary can distin-
guish between two games, is upper bounded.

G0: Let G0 be defined in figure 25 by excluding all boxes. Clearly, G0 is theN -MU-Ed-IDLOG.
By definition,

AdvN -MU-Ed-IDLOG
G,A (λ) = Pr[N -MU-Ed-IDLOGA ⇒ 1] = Pr[GA0 ⇒ 1].

G1: G1 is defined by including the if condition in the blue box, which sets a bad flag if the
randomly chosen value ch fulfills 2cch ≡ −ri (mod L) for any i ∈ {2, 3, ..., N + 1}. This repre-
sents challenges ch to which the solution might not be usable to break the discrete logarithm
of one of the public keys, due to (ri + 2cch) not being invertible in ZL. Since only the bad
flag is introduced this change does not influence the behavior of the game and is therefore only
conceptual.
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Pr[GA0 ⇒ 1] = Pr[GA1 ⇒ 1].

G2 : G2 also includes the abort instruction in the red box. The abort is triggered if the bad
flag is set to true. For each individual Chall oracle query the bad flag is set with a probability

of N

2− log2(⌈
22b−1

L
⌉2−2b)

. With 2− log2(⌈ 2
2b−1
L
⌉2−2b) being the min-entropy of ch and N being the

number of ri with which the equation 2cch ≡ −ri (mod L) could evaluate to true. By the
Union bound over all qo oracle quries we obtain Pr[bad] ≤ qoN

2− log2(⌈
22b−1

L
⌉2−2b)

. Since G1 and G2

are identical-until-bad games, we have

|Pr[GA1 ⇒ 1]− Pr[GA2 ⇒ 1]| ≤ Pr[bad] ≤
qoN⌈2

2b−1
L ⌉

22b
.

Finally, Game G2 is well-prepared to show that there exists an adversary B satisfying

Pr[GA2 ⇒ 1] = AdvN -Ed-DLog-Reveal
G,B (λ). (6.8)

Adversary BReveal(·)(A1, A2, ..., AN)

s∗ ← AChall(·)(A1, A2, ..., AN)
If ∄([R∗]⇀

r∗
, ch∗) ∈ Q, i ∈ {1, 2, ..., N} : R∗ = 2cs∗B − 2cch∗Ai then

abort
Let R∗ = r∗1B + r∗2A1 + ...+ r∗N+1AN

rb := r1
(a1, ..., ai−1, ai+1, ..., aN)← Reveal(i)
for j ∈ {1, 2, ..., N}\{i}
rb := rb + rj+1aj // Aj = ajB

ai := (2cs∗ − rb)(ri + 2cch∗)−1 // R∗ = rbB + riAi

return (a1, a2, ..., aN)

Oracle Chall ([R]⇀
r
∈ G)

Let R = r1B + r2A1 + ...+ rN+1AN

ch← {0, 1}2b
If ∃i ∈ {2, 3, ..., N + 1} : 2cch ≡ −ri (mod L) then
bad := true
abort

Q := Q ∪ {(R, ch)}
return ch

Figure 26: Adversary B breaking N -Ed-DLog-Reveal
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To prove (6.8), we define an adversary B attacking N -Ed-DLog-Reveal that simulates A’s view
in G2. Adversary B formally defined in figure 26 is run in the N -Ed-DLog-Reveal game and
adversary B simulates Chall for adversary A. Chall is simulated perfectly.

Finally, consider A’s output s∗. It is known that R∗ = 2cs∗B − 2cch∗Ai for one of the public
keys and one tuple (R∗, ch∗) generated by the Chall oracle. Using the Reveal oracle we can get
the discrete logarithms of all public keys but the one, for which s∗ is a valid solution in the N -
MU-Ed-IDLOG game. Together with the representation of R∗, provided during the Chall oracle
call, and the discrete logarithms of the public keys we are able to generate a representation of
R∗, which looks like R∗ = rbB + riAi. By equating both equations we get:

rbB + riAi = 2cs∗B − 2cch∗Ai

⇔ (ri + 2cch∗)A = (2cs∗ − rb)B

⇔ A = (2cs∗ − rb)(ri + 2cch∗)−1B

Assuming that ri+2cch∗ is invertible in ZL (i.e., not equal to 0), which is ensured by the abort
in G2 for all i, both equations can be used to calculate the discrete logarithm of Ai. Together
with the discrete logarithms of the other public keys, which were obtained by the Reveal oracle,
the adversary B is able to craft a valid solution for the N -Ed-DLog-Reveal challenger.

The runtime of adversary B is roughly the same as the runtime of adversary A. In the main
procedure the adversary B calls adversaryA, queries the Reveal oracle and performs some simple
calculations to obtain the discrete logarithm of all public keys. In the Chall the adversary simply
samples a 2b bitstring uniformly at random.

This proves theorem 6.6.

By combining the loss of advantage during all of the proofs above, combined with the loss
introduced by EdDSA’, a proof for theorem 6.1 and 6.2 is obtained.

7 The Ed-GGM

The following section gives specific bounds on the difficulty of certain variations of the discrete
logarithm and one-more discrete logarithm problems introduced in the previous proofs. These
proofs are given in the generic group model. In the generic group model, group elements are
represented as random bitstrings, and the adversary can only perform group operations by
invoking an oracle.

In order to build a generic group model for twisted Edwards curves, it is essential to examine the
group structure. As shown in section 5.4, a twisted Edwards curve can be uniquely decomposed
into a collection of cyclic subgroups. The generating set for this twisted Edwards curve is defined
as a set of generators for these cyclic subgroups. With a fixed generating set, any point on the
twisted Edwards curve can be uniquely expressed as a linear combination of the generators in
that set. Consequently, the adversary is given labels of the entire generator set as a description
of the twisted Edwards curve. In addition, the adversary has access to a group operation oracle,
GOp, which, given two labels and a bit indicating whether the group elements should be added
or subtracted, returns the label of the resulting group element.

48



The labels are bitstrings of length ⌈log2(L)⌉, with L being the order of the group.

7.1 Bounds on Ed-DLog

This section focuses on establishing a lower bound on the hardness of a modified version of the
discrete logarithm problem in the generic group model. This variant is introduced in definition
5.2 and works similarly to the original discrete logarithm problem, except for the secret scalar
generation, which is derived from the key generation algorithm of the EdDSA signature scheme.
The following proof is given in the generic group model for twisted Edwards curves.

Theorem 7.1. Let n and c be positive integers. Consider a twisted Edwards curve E with a
cofactor of 2c and a generating set consisting of (B,E2, ..., Em). Among these, let B be the
generator of the largest prime order subgroup with an order of L. Let A be a generic adversary
making at most qg group operations. Then,

AdvEd-DLog
E,n,c,L,A ≤

(qg + 3)2 + 1

2n−1−c
.

Proof Overview This proof closely resembles the original proof on the lower bound for the
discrete logarithm problem by Shoup [28]. The initial step involves working with the discrete
logarithms of group elements rather than the actual group elements themselves. In the generic
group model, this is equivalent as each group element can be uniquely represented by its discrete
logarithms with respect to a generating set. For consistency the generating set is denoted as
(B,E2, ..., Em), with B being the generator of the prime order subgroup and E2 to Em being
the generators of the other subgroups. Subsequently, the discrete logarithm in the prime order
subgroup is replaced by an indeterminate. By doing this, the discrete logarithm in the prime
order subgroup can be chosen after the adversary has provided their solution. As a result, the
generic adversary can only guess the discrete logarithm in the prime order subgroup, since it is
generated only after the adversary has already submitted their solution. Figure 27 shows the
Ed-DLog game in the generic group model.

The following proof utilizes the Schwartz-Zippel lemma [33]. The Schwarz-Zippel lemma is
defined as following:

Lemma 7.1 (Schwartz-Zippel lemma). Let L be a prime number and P ∈ FL[X1, ..., Xn] be a
non-zero polynomial of total degree d ≥ 0 over a field FL. Let S be a finite subset of FL and let
x be selected uniformly at random from S. Then

Pr[P (x) = 0] ≤ d

|S|
.

Formal Proof

Proof.

Let G0 be the Ed-DLog game in the generic group model. In this proof, the discrete logarithm
within the prime order subgroup of the group element A will be substituted with an indetermi-
nate. Following that, it will be demonstrated that the challenger, by working with polynomials
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Game Ed-DLog

a← {2n−1, 2n−1 + 2c, ..., 2n − 2c}
A := aB
a∗ ← AGOp(·,·,·)(Enc(B), Enc(E2), ..., Enc(Em), Enc(A))

return a∗
?
= a

Oracle GOp(x, y ∈ S, b ∈ {0, 1})
return Enc(

∑−1[x] + (−1)b
∑−1[y])

Procedure Enc(X ∈ E)

If
∑

[X] = ⊥ then∑
[X]← {0, 1}⌈log2(|E|)⌉\S

S := S ∪ {
∑

[X]}
return

∑
[X]

Figure 27: Ed-DLog in the generic group model

rather than actual discrete logarithms, makes errors in the simulation with negligible probabil-
ity. Finally, it will be established that the discrete logarithm of the group element A can be
selected after the adversary has submitted its solution for the game.

G0 : Let G0 be defined in figure 28 by excluding all boxes except the black ones. This is
identical to the Ed-DLog in the generic group model. By definition,

AdvEd-DLog
E,n,c,L,A = Pr[GA0 ⇒ 1].

G1 : G1 is defined by substituting some black boxes with blue ones, causing the challenger to
work with discrete logarithms rather than group elements. This modification is undetectable to
the adversary, as it only deals with labels representing group elements, and each group element
can be uniquely represented by its discrete logarithms. These discrete logarithms are denoted
by an integer vector, where each element corresponds to the discrete logarithm concerning the
generator in the generating set. The addition of these vectors is carried out component-wise.
This change remains conceptual, since it only changes how the challenger internally represents
group elements. Each group element is still assigned the same label. Therefore,

Pr[GA0 ⇒ 1] = Pr[GA1 ⇒ 1].

G2 : In G2, the blue boxes are replaced with the red ones, which involves replacing the discrete
logarithm of group elements in the prime order subgroup with a polynomial. The polynomial has
one indeterminant, denoted by Z, which represents the discrete logarithm of group element in
the prime order subgroup, provided to the adversary as a challenge. Therefore, the polynomial
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Game G0 / G1 /G2 / G3 / G4

a← {2n−1, 2n−1 + 2c, ..., 2n − 2c} // G0 −G4

A := aB // G0

A := (a, 0, ..., 0) // G1

P := Z // G2 −G4

A := (P, 0, ..., 0)

a∗ ← AGOp(·,·,·)(Enc(B), Enc(E2), ..., Enc(Em), Enc(A))

return a∗
?
= a

Oracle GOp(x, y ∈ S, b ∈ {0, 1})
return Enc(

∑−1[x] + (−1)b
∑−1[y])

Procedure Enc(X ∈ E) // G0

Procedure Enc(X ∈ ZL × Zord(E2) × ...× Zord(En)) // G1

Procedure Enc(X ∈ ZL[Z]× Zord(E2) × ...× Zord(En)) // G2 −G4

Let X = (P, x2, ..., xn)
P = P ∪ {P}
if ∃Pi ∈ P : Pi(a) = P (a) ∧ Pi ̸= P // G3 −G4

bad := true
abort // G4

X := (P (a), x2, ..., xn) // G2 −G4

If
∑

[X] = ⊥ then∑
[X]← {0, 1}⌈log2(|E|)⌉\S

S := S ∪ {
∑

[X]}
return

∑
[X]

Figure 28: G0 −G4

that serves as the discrete logarithm of the challenge in the prime order subgroup is simply
P = Z. It is important to note that this change is only conceptual since the polynomial is
ultimately evaluated at the secret scalar a in the Enc procedure. Hence,

Pr[GA1 ⇒ 1] = Pr[GA2 ⇒ 1].

G3 : G3 introduces the if condition within the green box. This condition checks if the challenger
generated two distinct polynomials that would produce the same value when evaluated at a.
This condition ensures that polynomials can be directly compared later on, rather than needing
to evaluate them. If the if condition evaluates to true, a bad flag is set to true, indicating
that the challenger might incorrectly assume that two discrete logarithms, represented by the
polynomials, are different by only comparing the polynomials. This modification is purely
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Game G4 / G5 /G6 / G7

a← {2n−1, 2n−1 + 2c, ..., 2n − 2c} // G4 −G6

P := Z
A := (P, 0, ..., 0)
a∗ ← AGOp(·,·,·)(Enc(B), Enc(E2), ..., Enc(Em), Enc(A))

a← {2n−1, 2n−1 + 8, ..., 2n − 8} // G7

if ∃Pi, Pj ∈ P : Pi(a) = Pj(a) ∧ Pi ̸= P // G6 −G7

bad := true
abort

return a∗
?
= a

Oracle GOp(x, y ∈ S, b ∈ {0, 1})
return Enc(

∑−1[x] + (−1)b
∑−1[y])

Procedure Enc(X ∈ ZL[Z]× Zord(E2) × ...× Zord(En))

Let X = (P, x2, ..., xn)
P = P ∪ {P}
if ∃Pi ∈ P : Pi(a) = P (a) ∧ Pi ̸= P // G4 −G5

bad := true
abort

X := (P (a), x2, ..., xn) // G4

If
∑

[X] = ⊥ then∑
[X]← {0, 1}⌈log2(|E|)⌉\S

S := S ∪ {
∑

[X]}
return

∑
[X]

Figure 29: G4 −G7

conceptual, as it only affects internal variables and does not influence the game’s behavior.
Therefore,

Pr[GA1 ⇒ 1] = Pr[GA2 ⇒ 1].

G4 : G4 terminates if the bad flag defined in the previous game is set. This bad flag signifies
situations where collisions of discrete logarithms would not be identified by merely comparing
polynomials without evaluating them. The likelihood of the bad flag being set can be determined
using the Schwartz-Zippel lemma. The set P is a set of all polynomials generated by the
challenger and the polynomial P represents the newly generated one. During the encoding of a
newly generated group element the challenger checks that no two distinct polynomials evaluate
to the same value at a. For a fixed Pi ∈ P ̸= P we define P ∗ = Pi − P . If and only if
Pi(a) = P (a) then P ∗(a) = 0. Since P ∗ ̸= 0, the degree of P ∗ being 1 and a being chosen
uniformly at random from {2n−1, 2n−1 + 2c, ..., 2n − 2c} the Schwarz-Zippel lemma can be used
to calculate the probability that P ∗(a) = 0, which is Pr[P ∗(a) = 0] ≤ 1

2n−1−c . Since the set P
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can hold at most qg+3 many polynomials (one per call to the group operation oracle GOp, and
three by encoding the input to the adversary) by the Union bound over all polynomials in P the
probability of bad being set, for each individual oracle query, is less or equal to

qg+3
2n−1−c . By the

Union bound over all oracle queries the probability of bad being set to true is Pr[bad] ≤ (qg+3)2

2n−1−c .
For this reason,

|Pr[GA2 ⇒ 1]− Pr[GA3 ⇒ 1]| ≤ Pr[bad] ≤ (qg + 3)2

2n−1−c
.

For improved readability, G4 is also depicted in figure 29 by including only the black boxes and
excluding all others. The subsequent game-hops are also illustrated in the same figure.

G5 : G5 removes the evaluation of the polynomial in the Enc procedure. This alteration is
purely conceptual, as the previous abort condition ensured that no two distinct polynomials
would yield the same value upon evaluation. Consequently, it is feasible to work directly with
the polynomials rather than evaluating them.

Pr[GA4 ⇒ 1] = Pr[GA5 ⇒ 1].

G6 : The difference in G6 is that the abort condition was moved into the main game after the
adversary provided its solution. Because of this change the secret scalar a is not being used
before the adversary provided its solution to the challenger. Therefore, the secret scalar a can
be chosen after the adversary provided its solution, which means that it has no better chance
to guess the solution. To demonstrate that this alteration is solely conceptual, it will be proven
that G6 aborts if and only if G5 would do the same.

G5 aborts ⇒ G6 aborts: If G5 aborts, it means that a polynomial Pi has been added to the
set P during the call to the Enc procedure, which satisfies the abort condition. In G6, the
polynomials in the set S remain the same, since the instruction for adding polynomials to the
set during the Enc procedure has not been altered between the games. After the adversary
provides its solution, the challenger checks for any pair of polynomials in the set that meet the
abort condition. Thus, G6 will abort if G5 would have aborted.

G6 aborts ⇒ G5 aborts: If G6 were to abort, the set P would contain a pair of polynomials
that satisfy the abort condition. The distinction between G6 and G5 is that G5 checks for the
existence of such a pair immediately after inserting a new polynomial. Consequently, if G6 were
to abort, G5 would also abort.

This proves that this change is only conceptual. Hence,

Pr[GA5 ⇒ 1] = Pr[GA6 ⇒ 1].
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G7 : The generation of the secret scalar a in G7 occurs after the adversary has provided its
solution. This modification is purely conceptual, as the secret scalar is not utilized prior to this
point. Thus,

Pr[GA6 ⇒ 1] = Pr[GA7 ⇒ 1].

As a result, the adversary has no improved likelihood of computing its solution a∗ other than
guessing, given that the challenger does not select a until the adversary has submitted its
solution. Since a being chosen uniformly at random from the set {2n−1, 2n−1 + 2c, ..., 2n − 2c}
the probability for the adversary to win G7 is:

Pr[GA7 ⇒ 1] ≤ 1

2n−1−c
.

This proves theorem 7.1.

7.2 Bounds on N-Ed-DLog-Reveal

This section provides a lower bound on the hardness of the modified version of the one-more
discrete logarithm problem in the generic group model. The variant of the one-more discrete
logarithm problem was introduced in the definition 6.2. N -Ed-DLog-Reveal differs from the
original one-more discrete logarithm problem by only allowing the adversary to query the dis-
crete logarithm of all challenges but one. Also the discrete logarithms of the group elements in
the challenge to the adversary are chosen from a predefined set that is the result of the special
key generation algorithm used in EdDSA. The following proof uses the generic group model
for twisted Edwards curves. There already exists a proof for the one-more discrete logarithm
problem in the generic group model [34]. This proof provides a lower bound on the original
definition of the one-more discrete logarithm problem. This proof is not directly applicable to
this definition of N -Ed-DLog-Reveal, since the secret scalars are not chosen uniformly at ran-
dom from ZL and the group structure is not just a prime order group. Since a more restricted
version of the one-more discrete logarithm problem is used a simpler proof than that in [34] can
be used, providing a better bound on N -Ed-DLog-Reveal.

Theorem 7.2. Let n, N , c be positive integers. Consider a twisted Edwards curve E with a
cofactor of 2c and a generating set consisting of (B,E2, ..., Em). Among these, let B be the
generator of the largest prime order subgroup with an order of L. Let A be a generic adversary
against N -Ed-DLog-Reveal receiving N group elements as challenge and making at most qg
group operations queries. Then,

AdvN-Ed-DLog-Reveal
E,n,c,L,A ≤ 2(qg +N + 2)2 + 1

2n−1−c
.

Proof Overview This proof uses the same approach as the discrete logarithm proof in the
generic group model by replacing the group elements with polynomials and choosing the chal-
lenge after the adversary provided its solution. The tricky part is that the adversary is able
to query the discrete logarithms of all but one of the N group elements, provided to it as a
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challenge. The proof starts by replacing all group elements with multivariate polynomials rep-
resenting their discrete logarithms. The indeterminants of those polynomials are the discrete
logarithms of each group element, provided to the adversary as challenges. Once the adversary
requests the discrete logarithms for all but one group element of the challenge those discrete
logarithms are chosen uniformly at random and all polynomials are partially evaluated. This
leaves polynomials with just one indeterminate, representing the discrete logarithm of the last
challenge. This challenge is then chosen after the adversary provided its solution, leaving the
adversay no option but to guess the remaining discrete logarithm. The N -Ed-DLog-Reveal
game in the generic group model is depicted in figure 30.

Game N -Ed-DLog-Reveal
for i ∈ {1, 2, ..., N}

ai ← {2n−1, 2n−1 + 2c, ..., 2n − 2c}
Ai := aiB

(a′1, a
′
2, ..., a

′
N )← AGOp(·,·,·),Reveal(·)(Enc(B), Enc(E2), ..., Enc(Em), Enc(A1), ..., Enc(AN ))

return (a1, a2, ..., aN )
?
= (a′1, a

′
2, ..., a

′
N )

Oracle Reveal(j ∈ {1, 2, ..., N}) // max. one query
return {ai|i ∈ {1, 2, ..., N}\{j}}

Oracle GOp(x, y ∈ S, b ∈ {0, 1})
return Enc(

∑−1[x] + (−1)b
∑−1[y])

Procedure Enc(X ∈ E)

If
∑

[X] = ⊥ then∑
[X]← {0, 1}⌈log2(|E|)⌉\S

S := S ∪ {
∑

[X]}
return

∑
[X]

Figure 30: N -Ed-DLog-Reveal in the generic group model
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Game G0 / G1 /G2 / G3 / G4

for i ∈ {1, 2, ..., N}
ai ← {2n−1, 2n−1 + 2c, ..., 2n − 2c} // G0 −G4

Ai := aiB // G0

Ai := (ai, 0, ..., 0) // G1

Pi := Zi // G2 −G4

Ai := (Pi, 0, ..., 0)

(a′1, a
′
2, ..., a

′
N )← AGOp(·,·,·),Reveal(·)(Enc(B), Enc(E2), ..., Enc(Em), Enc(A1), ..., Enc(AN ))

return (a1, a2, ..., aN )
?
= (a′1, a

′
2, ..., a

′
N )

Oracle Reveal(j ∈ {1, 2, ..., N})
for Pi ∈ P // G3 −G4

Let Pi = Ri + Si, Ri ∈ ZL[Z1, ..., Zj−1, Zj+1, ..., ZN ], Si ∈ ZL[Zj ]
R := R ∪ {Ri}

if ∃Ri, Rj ∈ R : Ri(
⇀
a ) = Rj(

⇀
a ) ∧Ri ̸= Rj

bad1 := true
abort // G4

for Pi ∈ P∑
[Ri(

⇀
a ) + Si] =

∑
[Pi]

Pi := Ri(
⇀
a ) + Si

return {ai|i ∈ {1, 2, ..., N}\{j}}

Oracle GOp(x, y ∈ S, b ∈ {0, 1})
return Enc(

∑−1[x] + (−1)b
∑−1[y])

Procedure Enc(X ∈ E) // G0

Procedure Enc(X ∈ ZL × Zord(E2) × ...× Zord(En)) // G1

Procedure Enc(X ∈ ZL[Z1, ..., ZN ]× Zord(E2) × ...× Zord(En)) // G2 −G4

Let X = (P, x2, ..., xn)
P = P ∪ {P}
X := (P (

⇀
a ), x2, ..., xn)

If
∑

[X] = ⊥ then∑
[X]← {0, 1}⌈log2(|E|)⌉\S

S := S ∪ {
∑

[X]}
return

∑
[X]

Figure 31: G0 −G4
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Game G4 / G5 /G6 / G7 / G8

for i ∈ {1, 2, ..., N}
ai ← {2n−1, 2n−1 + 2c, ..., 2n − 2c} // G4 −G7

Pi := Zi

Ai := (Pi, 0, ..., 0)
(a′1, a

′
2, ..., a

′
N )← AGOp(·,·,·),Reveal(·)(Enc(B), Enc(E2), ..., Enc(Em), Enc(A1), ..., Enc(AN ))

for i ∈ {1, 2, ..., N} // G8

if ai = ⊥
ai ← {2n−1, 2n−1 + 2c, ..., 2n − 2c}

if ∃Pi, Pj ∈ P : Pi(
⇀
a ) = Pj(

⇀
a ) ∧ Pi ̸= Pj // G5 −G8

bad2 := true
abort // G6 −G8

return (a1, a2, ..., aN )
?
= (a′1, a

′
2, ..., a

′
N )

Oracle Reveal(j ∈ {1, 2, ..., N})
for i ∈ {1, 2, ..., N}\{j} // G8

ai ← {2n−1, 2n−1 + 2c, ..., 2n − 2c}
for Pi ∈ P

Let Pi = Ri + Si, Ri ∈ ZL[Z1, ..., Zj−1, Zj+1, ..., ZN ], Si ∈ ZL[Zj ]
R := R ∪ {Ri}

if ∃Ri, Rj ∈ R : Ri(
⇀
a ) = Rj(

⇀
a ) ∧Ri ̸= Rj

bad1 := true
abort

for Pi ∈ P∑
[Ri(

⇀
a ) + Si] =

∑
[Pi]

Pi := Ri(
⇀
a ) + Si

return {ai|i ∈ {1, 2, ..., N}\{j}}

Oracle GOp(x, y ∈ S, b ∈ {0, 1})
return Enc(

∑−1[x] + (−1)b
∑−1[y])

Procedure Enc(X ∈ ZL[Z1, ..., ZN ]× Zord(E2) × ...× Zord(En))

Let X = (P, x2, ..., xn)
P = P ∪ {P}
X := (P (

⇀
a ), x2, ..., xn) // G4 −G6

If
∑

[X] = ⊥ then∑
[X]← {0, 1}⌈log2(|E|)⌉\S

S := S ∪ {
∑

[X]}
return

∑
[X]

Figure 32: G4 −G8

Formal Proof

Proof.

57



The proof starts by replacing group elements with polynomials. This happens in games G1 and
G2. After that it is argued that the challenger makes a mistake in its simulation with only
negligible probability by comparing polynomials directly instead of evaluating them. This is
shown in G3 −G6. At last, since the polynomials are not evaluated during the simulation, one
discrete logarithm is not used before the adversary provides its solution. Therefore, it can be
chosen after the adversary provided its solution, which is shown in G7 and G8.

G0 : Let G0 be depicted in figure 31 by excluding all boxes but the black ones. Clearly, this
is equivalent to the N -Ed-DLog-Reveal game in the generic group model. Therefore,

AdvN -Ed-DLog-Reveal
E,n,c,L,A = Pr[GA0 ⇒ 1].

G1 : G1 now replaces the group elements in the challenger with their discrete logarithms. This
change is purely conceptual, since the adversary only sees the labels of the group elements, and
each group element can be uniquely identified by its discrete logarithm. As in the Ed-DLog
proof, the discrete logarithm of a group element is denoted by an integer vector, where each
element in the vector represents the discrete logarithm with respect to a generator from the
generating set. For this reason,

Pr[GA0 ⇒ 1] = Pr[GA1 ⇒ 1].

G2 : G2 replaces the blue boxes with the red ones. This change affects the discrete logarithm
of the group elements in the prime order subgroup. The discrete logarithm is now represented
as a multivariate polynomial. Each indeterminate of the polynomial represents the discrete
logarithm of one of the group elements in the challenge to the adversary. The discrete logarithm
of the group element in the challenge to the adversary is then instantiated with the indeterminate
representing the discrete logarithm of that challenge, instead of the discrete logarithm itself.
This change is only conceptual, since the polynomials are evaluated with the discrete logarithm
vector of the group elements in the challenge before being compared in the Enc procedure.
Hence,

Pr[GA1 ⇒ 1] = Pr[GA2 ⇒ 1].

G3 : G3 introduces the bad1 flag in the Reveal query. Without loss of generality the following
explanation assumes that the adversary queries the Reveal oracle with input j = N . Each
polynomial, generated by the challenger, is a linear multivariate polynomial of degree one. This
is due to the fact that the challenger starts with linear multivariate polynomials of degree one
in ZL[Z1, ..., ZN ] and only adds them to generate new polynomials. This means that each
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polynomial Pi ∈ ZL[Z1, ..., ZN ], generated by the challenger, can be split into two polynomials
Ri ∈ ZL[Z1, ..., ZN−1], Si ∈ ZL[ZN ] so that Pi = Ri + Si, simply by distributing the monials
between the polynomials Ri and Si. The polynom Si only contains the monial Zn, while the
polynom Ri contains the remaining monials and the constant. Now the polynomial Pi can
be partially evaluated by setting Pi = Ri(

⇀
a ) + Si. For the simulation to be correct, when

replacing the polynomial Pi with Ri(
⇀
a ) + Si, it has to be ensured that distinct polynomials

stay distinct after being partially evaluated. To ensure this, it is necessary to check that no
two distinct polynomials Ri, Rj result in the same value when evaluated with

⇀
a . In the case of

this happening the bad1 flag is set to true. Afterward, each generated polynomial is partially
evaluated as described and the table

∑
, which stores the association between group elements

and labels, is updated to reflect this partial evaluation as well. From now on, each polynomial
used by the challenger is in ZL[ZN ]. This change is purely conceptual, since the polynomials
still get fully evaluated before being compared in the Enc procedure. Therefore,

Pr[GA2 ⇒ 1] = Pr[GA3 ⇒ 1].

G4 : In G4 the abort instruction in the orange box is introduced, which is executed after the
bad1 flag is set. The bad1 flag is set if distinct polynomials result in the same polynomial, after
being partially evaluated. To calculate the probability of this happening the Schwart-Zippel
lemma can be utilized. For every Ri, Rj ∈ R ∧ Ri ̸= Rj a polynomial R∗ := Ri − Rj can

be constructed. If and only if Ri(
⇀
a ) = Rj(

⇀
a ) then R∗(

⇀
a ) = 0. Since R∗ ̸= 0, the degree

of R∗ being 1 and
⇀
a being chosen uniformly at random from {2n−1, 2n−1 + 2c, ..., 2n − 2c}

the Schwartz-Zippel lemma can be used to calculate the probability of R∗(
⇀
a ) = 0, which is

Pr[R∗(
⇀
a ) = 0] ≤ 1

2n−1−c . The challenger can generate at most qg + N + 2 many polynomials,
one per group operation query GOp and N +2 for encoding the input to the adversary. By the
Union bound over all (qg+N+2)2 possible pairs of polynomials an upper bound on the bad1 flag

being set can be calculated as Pr[bad1] ≤ (qg+N+2)2

2n−1−c . Since G3 and G4 are identical-until-bad
games,

|Pr[GA3 ⇒ 1]− Pr[GA4 ⇒ 1]| ≤ (qg +N + 2)2

2n−1−c
.

To improve the readability, G4 is also depicted in figure 29 by only including the black boxes.
The following game-hops are illustrated in the same figure.

G5 : G5 introduces the check in the blue box. This check ensures that after the adversary
provided its solution no two distinct polynomials where generated by the challenger that evaluate
to the same value, when evaluated with the vector of discrete logarithms. If this happens the
bad2 flag is set. This change is only conceptual, as it only changes internal variables, which
have no effect on the behavior of the challenger. Hence,

Pr[GA4 ⇒ 1] = Pr[GA5 ⇒ 1].
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G6 : G6 aborts if the bad2 flag is set. The bad2 flag is set if any two distinct polynomials
evaluate to the same value, when evaluated with the vector of discrete logarithms. There are
two cases. The first case is that the adversary has queried the Reveal oracle. The second case
is that the adversary did not queried the Reveal oracle.

In the first case the adversary got the discrete logarithms of all but one challenge. Without loss
of generality it is assumed that the adversary queried the discrete logarithm of all but the Nth
group element. In this case all polynomials in P are in ZL[ZN ], since at the time of the Reveal
query all polynomials, generated up to this point, are partially evaluated and are in ZZ [ZN ].
All polynomials that are generated after this point are generated by the addition of the existing
polynomials and are therefore also in ZL[ZN ]. In this case the Schwartz-Zippel lemma can be
applied since the adversary has no information on the remaining discrete logarithm. This is the
same scenario as in the Ed-DLog proof.

In the case where the adversary did not queried the Reveal oracle the adversary has no in-
formation on any of the discrete logarithms. All polynomials in P are in ZZ [N1, ..., ZN ]. In
this case the Schwartz-Zippel lemma can be applied, since the all discrete logarithms are chosen
uniformly at random and the adversary has no information on them, prior to them being chosen.

The probability of bad2 being true can be calculated using the Schwartz-Zippel lemma, as
described in the game-hop to G4. With the Union bound over all polynomial pairs in P the

probability of bad2 being true is Pr[bad2] ≤ (qg+N+2)2

2n−1−c . G5 and G6 are identical-until-bad games,
therefore:

|Pr[GA5 ⇒ 1]− Pr[GA6 ⇒ 1]| ≤ (qg +N + 2)2

2n−1−c
.

G7 : G7 removes the evaluation of polynomials in the Enc procedure. It is argued that this
change is only conceptual. When the evaluation of polynomials is removed, the polynomials are
compared directly. Group elements represented by different polynomials are assigned different
labels by the challenger. This is equivalent to the original definition as long as different poly-
nomials do not evaluate to the same value, when evaluated with the discrete logarithms. This
inconsistency in the simulation can be detected by the adversary when it gets some information
on the discrete logarithms. This can either be during the query to the Reveal oracle or after the
adversary provided its solution. In both cases there is an if condition checking for this incon-
sistency. If such an inconsistency is detected the game aborts. This change is only conceptual,
since the different polynomials correspond to different group elements, in the cases where the
game does not abort, and since the adversary only sees the labels it cannot detect whether the
challenger works with polynomials or concrete discrete logarithms. Hence,

Pr[GA6 ⇒ 1] = Pr[GA7 ⇒ 1].
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G8 : In G8 the discrete logarithms of the challenge are only generated right before they are
used. Since the discrete logarithms are not used during the Enc function anymore they the
challenger can generate them not at the start of the game but only right before they are used.
The discrete logarithms are only used during the inconsistency checks in the Reveal oracle
or after the adversary has provided its solution. N − 1 discrete logarithms are used in the
Reveal oracle to check for inconsistencies and to partially evaluate the polynomials. After the
adversary provided its solution the remaining discrete logarithms can chosen to fully evaluate
all polynomials. This can be either all discrete logarithm, in the case that the adversary did
not queried the Reveal oracle, or the remaining one, in the case that the adversary did queried
the Reveal oracle. This change is only conceptual, since the initialization of variables is only
moved right before the variable is used. Therefore,

Pr[GA7 ⇒ 1] = Pr[GA8 ⇒ 1].

Since at least one discrete logarithm is chosen after the adversary provided its solution, its
only chance is to guess it. Therefore, the probability of the adversary of winning G7 is upper
bounded by the probability of it guessing that discrete logarithm. Hence,

Pr[GA8 ⇒ 1] ≤ 1

2n−1−c
.

This proves theorem 7.2.

8 Concrete Security of EdDSA

Now that a security bound on the complexity of an adversary breaking EdDSA has been es-
tablished the concrete security of the signature scheme can be analyzed. The security level
of a cryptographic scheme can be determined by analysing the success ratio of an adversary.
The success ratio of an attacker can be determined by analyzing its success probability and its
runtime. The success ratio is simply the advantage of an adversary devided by its runtime.
This follows the approach for concrete security of Bellare and Ristenpart [35] but the definition
of success ratio and bit security is taken from [36].

Definition 8.1 (Success Ratio [36]). Let adversary A be an adversary with runtime Time(A)
and advantage AdvA. Its success ratio is defined as following:

SR(A) = AdvA
Time(A)

.

With this definition of the success ratio the bit security of a cryptographic scheme can be
defined.

Definition 8.2 (Bit Security [36]). A cryptographic scheme has κ bit security if the success
ratio of all adversaries with a runtime Time(A) ≤ 2κ is upper bounded by 2−κ.
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This definition can be used to calculate the bit security of concrete instantiations of EdDSA.
The most popular instantations of EdDSA are Ed25519 and Ed443, as they are also specified
in the RFC and the NIST standard.

8.1 Ed25519

Theorem 8.1 (Ed25519 Bit Security). The Ed25519 signature scheme provides 125-bit se-
curity in the single-user setting and 124-bit security in the multi-user setting against generic
adversaries.

Ed25519 is one of the most widely used instantiations of EdDSA. According to the RFC it is
supposed to provide around 128-bit of security. It uses the twisted Edwards curve Ed25519 and
SHA-512 as a hash function [3] [4]. This provides the following values, needed to calculate the
security level of Ed25519 according to the security proof in this thesis:

Parameter Value

b 256
n 254
c 3
L 2252 + 27742317777372353535851937790883648493

Table 2: Parameter of Ed25519

Proof.

At first the runtime of the adversaries against Ed25519 in the single user setting is analyzed.
This can be done by analyzing the runtime of an adversary B against Ed-DLog, since the
runtime of both adversaries is roughly the same. The success probability of an adversary B in

the Ed-DLog game is AdvEd-DLog
E,n,c,L,B ≤

(qg+3)2+1
2n−1−c . When instantiated with the values for Ed25519,

an adversary B is able to solve the Ed-DLog game with constant probability after about 2125

group operations. Therefore, the runtime of the adversary B in the Ed-DLog game can be upper
bounded by 2125. The runtime of an adversary A against Ed25519 is roughly the same as the
adversary B against Ed-DLog and can therefore also be upper bounded by 2125. This, together
with the advantage of adversary A, can be used to upper bound its success ratio.

Since the runtime of the adversary is upper bounded by 2125 the amount of hash quries qh and
group operations qg can also be upper bounded by 2125. A reasonable upper bound for the
signing quries qo is 264, as they are online and can not be computed by the adversary in secret.
This provides following equation for the success ratio:
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SR(A) ≤
AdvSUF-CMA

G,A (λ)

Time(A)

≤
AdvEd-DLog

E,n,c,L,B +
2(qh+1)

2b
+

qo(qh+1)⌈ 2
2b−1
L
⌉

22b

Time(A)

≤
(qg+3)2+1
2n−1−c + 2(qh+1)

2b
+

qo(qh+1)⌈ 2
2b−1
L
⌉

22b

Time(A)

≤ (2125 + 3)2 + 1

22502125
+

2(2125 + 1)

22562125
+

264(2125 + 1)2260

25122125

≈ 2−125 + 2−316 + 2−188

≈ 2−125

This shows that Ed25519 provides 125-bit security in the single-user setting.

To get a security level in the multi-user setting an upper bound on the number of instances N is
needed. In [12] Kiltz et al. mentioned that the existance of at lease N = 230(≈ 1 billion) public
keys can be assumed. For the following calculations the number of instances is assumed to be
N ≤ 235. An adversary B against N -Ed-DLog-Reveal has a constant probability of winning
the game after about 2125 group operations. Hence, its runtime is upper bounded by 2125. The
success ratio can then be calculated in the same way as it has been done in the single-user
setting.

This provides a success ratio of:

SR(A) ≤
AdvN -MU-SUF-CMA

G,A (λ)

Time(A)

≤
AdvN -Ed-DLog-Reveal

E,n,c,L,A + 2(qh+1)
2b

+
qo(qh+N)⌈ 2

2b−1
L
⌉

22b

Time(A)

≤
2(qg+N+2)2+1

2n−1−c + 2(qh+1)
2b

+
qo(qh+N)⌈ 2

2b−1
L
⌉

22b

Time(A)

≤ 2(2125 + 235 + 2)2 + 1

22502125
+

2(2125 + 1)

22562125
+

264(2125 + 235)2260

25122125

≈ 2−124 + 2−316 + 2−188

≈ 2−124

This shows that Ed25519 provides 124-bit security in the multi-user setting.

This proofs theorem 8.1.

8.2 Ed448

Theorem 8.2 (Ed448 Bit Security). The Ed448 signature scheme provides 221-bit security in
the single-user setting and 220-bit security in the multi-user setting against generic adversaries.
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Another popular instantiation of the EdDSA signature scheme is Ed448. It uses the Ed448
twisted Edwards curve and SHAKE256 as hash function. It is supposed to provide around
224 bits of security and was also standardized by the IETF and NIST [3] [4]. The respective
standards provide following values:

Parameter Value

b 456
n 447
c 2
L 2446−13818066809895115352007386748515426880336692474882178609894547503885

Table 3: Parameter of Ed448

Proof.

This can be used to upper bound the success ratio of an adversary A against Ed448. To
begin, the runtime of an adversary B against Ed-DLog is upper bounded, using the values from
the Ed448 signature scheme. The adversary B achieves a constant probability of winning the
Ed-DLog game after 2223 group operations. This also upper bounds its runtime. Now the
success ratio of adversary A against Ed448 can be calculated as following:

SR(A) ≤
AdvSUF-CMA

G,A (λ)

Time(A)

≤
AdvEd-DLog

E,n,c,L,B +
2(qh+1)

2b
+

qo(qh+1)⌈ 2
2b−1
L
⌉

22b

Time(A)

≤
(qg+3)2+1
2n−1−c + 2(qh+1)

2b
+

qo(qh+1)⌈ 2
2b−1
L
⌉

22b

Time(A)

≤ (2223 + 3)2 + 1

24442223
+

2(2223 + 1)

24562223
+

264(2223 + 1)2466

29122223

≈ 2−221 + 2−455 + 2−372

≈ 2−221

This shows that Ed448 provides 221-bit security in the single-user setting.

Now the same is done for the multi-user security of Ed448. This yields following upper bound
for the success ratio:
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SR(A) ≤
AdvN -MU-SUF-CMA

G,A (λ)

Time(A)

≤
AdvN -Ed-DLog-Reveal

E,n,c,L,A + 2(qh+1)
2b

+
qo(qh+N)⌈ 2

2b−1
L
⌉

22b

Time(A)

≤
2(qg+N+2)2+1

2n−1−c + 2(qh+1)
2b

+
qo(qh+N)⌈ 2

2b−1
L
⌉

22b

Time(A)

≤ 2(2223 + 235 + 2)2 + 1

24442223
+

2(2223 + 1)

24562223
+

264(2223 + 235)2466

29122223

≈ 2−220 + 2−445 + 2−372

≈ 2−220

This shows that Ed448 provides 220-bit security in the multi-user setting.

This proofs theorem 8.2.

9 Conclusion

In this thesis it has been proven that EdDSA is tightly secure using the algebraic group model
and the random oracle model. An algebraic attacker does not gain an advantage by attacking the
signature scheme instead of attacking the underlying discrete logarithm problem directly, when
taking the clamping of the private key into account. When using strict parsing of signatures the
EdDSA signature scheme ensures SUF-CMA security and when using lax parsing the signature
scheme still provides EUF-CMA security.

It has also been proven that the most common instantiations Ed25519 and Ed448 provide 125-
bit of security and 221-bit of security respectively. This is weaker than the original discrete
logarithm problem for the elliptic curves used, but was to be expected considering the clamping
of the private key.

Moreover, it has been proven that the signature scheme does not lose much of its security
considering a multi-user setting. More specific, with a generous assumption of the existence of
235(≈ 32 billion) public keys the scheme loses only one bit of security.

According to the results of this thesis, EdDSA has been proven to be a secure signature scheme
and that the modifications done to the original Schnorr signature scheme have very little affect on
the security of the signature scheme. In fact, the only noticeable loss in security was introduced
by the clamping of the private key.
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